Open Access
Acta Acust.
Volume 6, 2022
Article Number 22
Number of page(s) 13
Section Underwater Sound
Published online 08 June 2022
  1. X.Y. He, Z.M. Cai, J.Y. Lin, X.Z. Jiang, H.N. Huang: The simulation research on forecasting the detection range of active sonar. Acta Simulata Systematica Sinica 15, 9 (2003) 1304–1306. [Google Scholar]
  2. S.M. Ivansson: Numerical modeling for design of viscoelastic coatings with favorable sound absorbing properties. Nonlinear Analysis: Theory, Methods & Applications 30, 63 (2005) 1541–1550. [Google Scholar]
  3. S.M. Ivansson: Sound absorption by viscoelastic coatings with periodically distributed cavities. The Journal of the Acoustical Society of America 119, 6 (2006) 3558–3567. [CrossRef] [Google Scholar]
  4. H.C. Strifors, G.C. Gaunaurd: Selective reflectivity of viscoelastically coated plates in water. The Journal of the Acoustical Society of America 88, 2 (1990) 901–910. [CrossRef] [Google Scholar]
  5. M.K. Hinders, B.A. Rhodes, T.M. Fang: Particle-loaded composites for acoustic anechoic coatings. Journal of Sound and Vibration 185, 2 (1995) 219–246. [CrossRef] [Google Scholar]
  6. H.G. Zhao, Y.Z. Liu, J.H. Wen, D.L. Yu, G. Wang: Sound absorption of locally resonant sonic materials. Chinese Physics Letters 23, 008 (2006) 2132. [CrossRef] [Google Scholar]
  7. G.A. Brigham, J.J. Libuha, R.P. Radlinski: Analysis of scattering from large planar gratings of compliant cylindrical shells. Journal of the Acoustical Society of America 61, 1 (1977) 48–59. [CrossRef] [Google Scholar]
  8. R.P. Radlinski: Scattering from multiple gratings of com-pliant tubes in a viscoelastic layer. Journal of the Acoustical Society of America 85, 6 (1989) 2301–2310. [CrossRef] [Google Scholar]
  9. B. Liang, X. Zou, J. Cheng: Effective medium method for sound propagation in a soft medium containing air bubbles. Journal of the Acoustical Society of America 124, 3 (2008) 1419. [CrossRef] [PubMed] [Google Scholar]
  10. M. Hao, J. Wen, H. Zhao, X. Wen: Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics. Journal of Sound and Vibration 331, 20 (2012) 4406–4416. [CrossRef] [Google Scholar]
  11. A.C. Hennion, R. Bossut, J.N. Decarpigny: Analysis of the scattering of a plane acoustic wave by a periodic elastic structure using the finite element method: Application to compliant tube gratings. The Journal of the Acoustical Society of America 87, 4 (1990) 1861–1870. [CrossRef] [Google Scholar]
  12. A.C. Hennion, J.N. Decarpigny: Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Applicationto Alberich anechoic coatings. The Journal of the Acoustical Society of America 90, 6 (1991) 3356–3367. [CrossRef] [Google Scholar]
  13. V. Easwaran, M.L. Munjal: Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers: A finite element approach. Journal of the Acoustical Society of America 93, 3 (1993) 1308–1318. [CrossRef] [Google Scholar]
  14. J. Zhong, H.G. Zhao, H.B. Yang, J.F. Yin, J.H. Wen: On the accuracy and optimization application of an axisymmetric simplified model for underwater sound absorption of anechoic coatings. Applied Acoustics 145 (2019) 104–111. [CrossRef] [Google Scholar]
  15. J.V. Ramakrishnan, L.R. Koval: A finite element model for sound transmission through laminated composite plates. Journal of Sound & Vibration 112, 3 (1987) 433–446. [CrossRef] [Google Scholar]
  16. P. Gerstoft: Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions. Journal of the Acoustical Society of America 95, 2 (1994) 770–782. [CrossRef] [Google Scholar]
  17. V. Westerlin: Multi-frequency inversion of synthetic transmission loss data using a genetic algorithm. Journal of Computational Acoustics 6, 01n02 (2011) 205–221. [Google Scholar]
  18. S.M. Ivansson: Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes. Journal of the Acoustical Society of America 124, 4 (2008) 1974–1984. [CrossRef] [PubMed] [Google Scholar]
  19. Y.C. Chang, L.J. Yeh, M.C. Chiu: Optimization of constrained composite absorbers using simulated annealing. Applied Acoustics 66, 3 (2005) 341–352. [CrossRef] [Google Scholar]
  20. M. Tao, Y. Zhao, G.W. Wang: Parameter optimization of sound absorption layer based on genetic algorithm. Journal of Vibration & Shock 33, 2 (2014) 20–25. [Google Scholar]
  21. D.G. Krige: A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy 52, 6 (1951) 119–139. [Google Scholar]
  22. J. Sacks, W.J. Welch, T.J. Mitchell: Design and analysis of computer experiments. Statistical Science 4, 4 (1989) 409–435. [Google Scholar]
  23. X.F. Mu, W.X. Yao, X.Q. Yu: A survey of surrogate models used in MDO. Chinese Journal of Computational Mechanics 22, 5 (2005) 608–612. [Google Scholar]
  24. A.I.J. Forrester, A. Sobster, A.J. Keane: Engineering design via surrogate modeling: A practical guide. John Wiley & Sons, Chichester, 2008. ISBN: 978-0-470-06068-1. [CrossRef] [Google Scholar]
  25. A. Vavalle, N. Qin: Iterative response surface based optimization scheme for transonic airfoil design. Journal of Aircraft 44, 2 (2007) 365–376. [CrossRef] [Google Scholar]
  26. H. Yan, G. Zhu, Z. Xu, S. Gao: Volume rendering and 3D modeling of hydrologic layer based on Kriging algorithm. Journal of Wuhan University, Information Science Edition 29, 7 (2004) 611–614. [Google Scholar]
  27. P. Eguía, E. Granada, J.M. Alonso: Weather datasets generated using Kriging techniques to calibrate building thermal simulations with TRNSYS. Journal of Building Engineering 7 (2016) 78–91. [CrossRef] [Google Scholar]
  28. Z.H. Han, S. Görtz, R. Zimmermann: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Journal of Aerospace Science and Technology 25, 1 (2013) 177–189. [CrossRef] [Google Scholar]
  29. Z.H. Han, R. Zimmermann, S. Görtz: Alternative cokriging model for variable-fidelity surrogate modeling. AIAA Journal 50, 5 (2012) 1205–1210. [CrossRef] [Google Scholar]
  30. Z.H. Han, S. Görtz, R. Hain: A variable-fidelity modeling method for aero-loads prediction. New Results in Numerical and Experimental Fluid Mechanics VII, Notes on Numerical Fluid Mechanics and Multidisciplinary Design 112 (2010) 17–25. [CrossRef] [Google Scholar]
  31. Z.Y. He, M. Wang: Investigation of the sound absorption of homogeneous composite multiple-layer structures in water. Applied Acoustics 15, 5 (1996) 6–11. [Google Scholar]
  32. J. Sun: Design theory and realization of low-frequency sound source based on water gap discharge. Ph.D. Thesis, Dalian University of Technology Library, Dalian, 2010. [Google Scholar]
  33. C. Ren: Acoustic performance analysis and optimal design of sound absorbing cover and composite acoustic panel. Doctoral dissertation, Dalian University of Technology, Dalian, Liaoning, China, 2020. [Google Scholar]
  34. T. Meng: Simplified model for predicting acoustic performance of an underwater sound absorption coating. Journal of Vibration & Control 20, 3 (2014) 339–354. [CrossRef] [Google Scholar]
  35. M. Zadkarami, M. Shahbazian, K. Salahshoor: Pipeline leakage detection and isolation: An integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN). Journal of Loss Prevention in the Process Industries 43 (2016) 479–487. [CrossRef] [Google Scholar]
  36. S.N. Panigrahi, C.S. Jog, M.L. Munjal: Multi-focus design of underwater noise control linings based on finite element analysis. Applied Acoustics 69, 12 (2008) 1141–1153. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.