Open Access
Scientific Article
Acta Acust.
Volume 6, 2022
Article Number 24
Number of page(s) 14
Section Aeroacoustics
Published online 22 June 2022
  1. D.Y. Dube, H.G. Patel: Suppressing the noise in measured signals for the control of helicopters. Fluctuation and Noise Letters 18, 1 (2019). [Google Scholar]
  2. F. Liu, J. Lin, Y.Z. Wang: Design of cable parallel air-core coil sensor to reduce motion-induced noise in helicopter transient electromagnetic system. IEEE Transactions on Instrumentation and Measurement 68, 2 (2019) 525–532. [CrossRef] [Google Scholar]
  3. S. Hartjes, H.G. Visser: Optimal control approach to helicopter noise abatement trajectories in nonstandard atmospheric conditions. Journal of Aircraft 56, 1 (2019) 43–52. [CrossRef] [Google Scholar]
  4. S. Vouror, I. Goulos, C. Scullion: Impact of tip-vortex modeling uncertainty on helicopter rotor blade-vortex interaction noise prediction. Journal of the American Helicopter Society 66, 1 (2021) 1053–1065. [Google Scholar]
  5. S. Vouros, I. Goulos, V. Pachidis: Integrated methodology for the prediction of helicopter rotor noise at mission level. Aerospace Science and Technology 89 (2019) 136–149. [CrossRef] [Google Scholar]
  6. L.Q. Wang, G.H. Xu, Y.J. Shi: Development and validation of a hybrid method for predicting helicopter rotor impulsive noise. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering 233 (2019) 1323–1339. [CrossRef] [Google Scholar]
  7. J.E. Ffowcs Williams, D.L. Hawkings: Sound generation by turbulence and surface in arbitrary motion. Philosophical Transactions of the Royal Society A264, 1151 (1969) 321–342. [Google Scholar]
  8. G. Ghorbaniasl, C. Lacor: A moving medium formulation for prediction of propeller noise at incidence. Journal of Sound and Vibration 331 (2012) 117–137. [CrossRef] [Google Scholar]
  9. G. Ghorbaniasl, L. Siozos-Rousoulis, C. Lacor: A time-domain Kirchhoff formula for the convective acoustic wave equation. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences 472, 2187 (2016) 20150689. [CrossRef] [PubMed] [Google Scholar]
  10. Z.J. Huang, L. Siozos-Rousoulis, T.D. Troyer, G. Ghorbaniasl: A time-domain method for prediction of noise radiated from supersonic rotating sources in a moving medium. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences 474, 2210 (2018) 20170089. [CrossRef] [PubMed] [Google Scholar]
  11. M.J. Bluck, S.P. Walker: Analysis of three-dimensional transient acoustic wave propagation using the boundary integral equation method. International Journal for Numerical Methods in Engineering 39 (1996) 1419–1431. [CrossRef] [Google Scholar]
  12. A.A. Ergin, B. Shanker, E. Michielssen: Analysis of transient wave scattering from rigid bodies using a Burton-Miller approach. Journal of the Acoustical Society of America 106, 5 (1996) 2396–2404. [Google Scholar]
  13. D.J. Chappell, P.J. Harris, D. Henwood, R. Chakrabarti: A stable boundary element method for modeling transient acoustic radiation. Journal of the Acoustical Society of America 120, 1 (2006) 74–80. [CrossRef] [Google Scholar]
  14. R. Michel, K. Korcan: Near-and-far field modeling of advanced tail-rotor noise using source-mode expansions. Journal of Sound and Vibration 453 (2019) 328–354. [CrossRef] [Google Scholar]
  15. S. Lee, K. Brentner, P. Morris: Acoustic scattering in the time domain using an equivalent source method. AIAA Journal 48, 12 (2010) 2772–2780. [CrossRef] [Google Scholar]
  16. S. Lee, K.S. Brentner, P.J. Morris: Time-domain approach for acoustic scattering of rotorcraft noise. Journal of the American Helicopter Society 57, 4 (2012) 1–12. [CrossRef] [Google Scholar]
  17. N. Curle: The influence of solid boundaries upon aerodynamic sound. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 231, 1187 (1955) 505–514. [Google Scholar]
  18. O. Amoiridis, L. Siozos-Rousoulis, Z. Huang, N. Ricks, A. Kalfas, G. Ghorbaniasl: Aeroacoustic scattering of rotating sources using a frequency-domain acoustic pressure gradient formulation. Applied Acoustics 130 (2018) 99–106. [CrossRef] [Google Scholar]
  19. L. Siozos-Rousoulis, O. Amoiridis, Z. Huang, T. De Troyer, A.I. Kalfas, G. Ghorbaniasl: A convected frequency-domain equivalent source approach for aeroacoustic scattering prediction of sources in a moving medium. Journal of Sound and Vibration 431 (2018) 88–104. [CrossRef] [Google Scholar]
  20. S.A. Glegg: Airfoil self-noise generated in a cascade. AIAA Journal 36, 9 (1998) 1125–1182. [Google Scholar]
  21. D. Casalino, M. Genito, A. Visingardi: Numerical analysis of airframe noise scattering effects in tilt rotor systems. AIAA Journal 45, 4 (2007) 751–759. [CrossRef] [Google Scholar]
  22. R.R. Mankbadi: Review of computational aeroacoustics in propulsion systems. Journal of Propulsion and Power 15, 4 (1999) 504–512. [CrossRef] [Google Scholar]
  23. Z.H. Wang, C.X. Bi, X.Z. Zhang, Y.B. Zhang: Sound field prediction and separation in a moving medium using the time domain equivalent source method. Acta Acustica United with Acustica 103, 3 (2017) 401–410. [CrossRef] [Google Scholar]
  24. D.Z. Suarez: Helicopters. Model World 3 (2020) 6–15. [Google Scholar]
  25. A. Sehgal, E. Boyle: Design and development of a four-bladed tail rotor system for the USMC H-1 upgrade program. Journal of the American Helicopter Society 49, 2 (2004) 99–108. [CrossRef] [Google Scholar]
  26. A. Dobyns, B. Barr, J. Adelmann: RAH-66 Comanche building block structural qualification program. American Society for Testing and Materials Special Technical Publication 1383 (2001) 140–157. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.