Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 5
Number of page(s) 12
Section Active Control
DOI https://doi.org/10.1051/aacus/2022001
Published online 31 January 2022
  1. G. Palma, H. Mao, L. Burghignoli, P. Göransson, U. Iemma: Acoustic metamaterials in aeronautics. Applied Sciences 8 (2018) 971. [CrossRef] [Google Scholar]
  2. X. Ma, Z. Su: Development of acoustic liner in aero engine: A review. Science China Technological Sciences (2020) 1–14. [Google Scholar]
  3. D.-Y. Maa: Potential of microperforated panel absorber. The Journal of the Acoustical Society of America 104 (1998) 2861–2866. [Google Scholar]
  4. B.S. Beck, N.H. Schiller, M.G. Jones: Impedance assessment of a dual-resonance acoustic liner. Applied Acoustics 93 (2015) 15–22. [CrossRef] [Google Scholar]
  5. Y. Aurégan: Ultra-thin low frequency perfect sound absorber with high ratio of active area. Applied Physics Letters 113 (2018). [Google Scholar]
  6. Y. Aurégan, M. Farooqui, J.-P. Groby: Low frequency sound attenuation in a flow duct using a thin slow sound material. The Journal of the Acoustical Society of America 139 (2016) EL149–EL153. [Google Scholar]
  7. J. Boulvert, T. Cavalieri, J. Costa-Baptista, L. Schwan, V. Romero-García, G. Gabard, E.R. Fotsing, A. Ross, J. Mardjono, J.-P. Groby: Optimally graded porous material for broadband perfect absorption of sound. Journal of Applied Physics 126 (2019) 175101. [CrossRef] [Google Scholar]
  8. T. Cavalieri, J. Boulvert, G. Gabard, V. Romero-García, M. Escouflaire, J. Regnard, J.-P. Groby: Graded and anisotropic porous materials for broadband and angular maximal acoustic absorption. Materials 13 (2020) 4605. [CrossRef] [Google Scholar]
  9. H.F. Olson, E.G. May: Electronic sound absorber. The Journal of the Acoustical Society of America 25 (1953) 1130–1136. [CrossRef] [Google Scholar]
  10. D. Thenail, M.-A. Galland, M. Sunyach: Active enhancement of the absorbent properties of a porous material. Smart Materials and Structures 3 (1994) 18. [CrossRef] [Google Scholar]
  11. M. Furstoss, D. Thenail, M.-A. Galland: Surface impedance control for sound absorption: Direct and hybrid passive/active strategies. Journal of Sound and Vibration 203 (1997) 219–236. [CrossRef] [Google Scholar]
  12. E. Rivet, S. Karkar, H. Lissek: Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control. IEEE Transactions on Control Systems Technology 25 (2016) 63–72. [Google Scholar]
  13. M.-A. Galland, B. Mazeaud, N. Sellen: Hybrid passive/active absorbers for flow ducts. Applied Acoustics 66 (2005) 691–708. [CrossRef] [Google Scholar]
  14. B. Betgen, M.-A. Galland, E. Piot, F. Simon: Implementation and non-intrusive characterization of a hybrid active–passive liner with grazing flow. Applied Acoustics 73 (2012) 624–638. [CrossRef] [Google Scholar]
  15. R. Boulandet, H. Lissek, S. Karkar, M. Collet, G. Matten, M. Ouisse, M. Versaevel: Duct modes damping through an adjustable electroacoustic liner under grazing incidence. Journal of Sound and Vibration 426 (2018) 19–33. [CrossRef] [Google Scholar]
  16. M. Rossi: Acoustics and electroacoustics. Artech House Publishers (1988). [Google Scholar]
  17. E. Moreau: Airflow control by non-thermal plasma actuators, Journal of Physics D: Applied Physics 40 (2007) 605. [CrossRef] [Google Scholar]
  18. F.O. Thomas, A. Kozlov, T.C. Corke: Plasma actuators for cylinder flow control and noise reduction. AIAA Journal 46 (2008) 1921–1931. [CrossRef] [Google Scholar]
  19. S. El-Khabiry, G. Colver: Drag reduction by dc corona discharge along an electrically conductive flat plate for small reynolds number flow. Physics of Fluids 9 (1997) 587–599. [CrossRef] [Google Scholar]
  20. V. Kopiev, Y.S. Akishev, I. Belyaev, N. Berezhetskaya, V. Bityurin, G. Faranosov, M. Grushin, A. Klimov, V. Kopiev, I. Kossyi, et al.: Instability wave control in turbulent jet by plasma actuators. Journal of Physics D: Applied Physics 47 (2014) 505201. [CrossRef] [Google Scholar]
  21. X. Huang, X. Zhang: Streamwise and spanwise plasma actuators for flow-induced cavity noise control. Physics of Fluids 20 (2008) 037101. [CrossRef] [Google Scholar]
  22. F. Bastien: Acoustics and gas discharges: Applications to loudspeakers. Journal of Physics D: Applied Physics 20 (1987) 1547. [CrossRef] [Google Scholar]
  23. P. Béquin, K. Castor, P. Herzog, V. Montembault: Modeling plasma loudspeakers. The Journal of the Acoustical Society of America 121 (2007) 1960–1970. [CrossRef] [PubMed] [Google Scholar]
  24. S. Sergeev, H. Lissek, A. Howling, I. Furno, G. Plyushchev, P. Leyland: Development of a plasma electroacoustic actuator for active noise control applications. Journal of Physics D: Applied Physics 53 (2020) 495202. [CrossRef] [Google Scholar]
  25. B. Zhang, J. He, Y. Ji: Dependence of the average mobility of ions in air with pressure and humidity. IEEE Transactions on Dielectrics and Electrical Insulation 24 (2017) 923–929. [CrossRef] [Google Scholar]
  26. T. Cox, P. d’Antonio: Acoustic absorbers and diffusers: Theory, design and application, CRC Press (2016). [CrossRef] [Google Scholar]
  27. M. Vorländer: Acoustic measurements. In: Müller G, Möser M, Eds. Handbook of engineering acoustics. Berlin, Heidelberg: Springer, 2013, pp. 23–52. [Google Scholar]
  28. S. Klein: Un nouveau transducteur électroacoustique: L’ionophone. Acta Acustica united with Acustica 4 (1954) 77–79. [Google Scholar]
  29. Y. Aurégan, M. Leroux, V. Pagneux: Measurement of liner impedance with flow by an inverse method. In: 10th AIAA/CEAS Aeroacoustics Conference, 2004, p. 2838. [Google Scholar]
  30. M. D’Elia, T. Humbert, Y. Aurégan: Effect of flow on an array of Helmholtz resonators: Is kevlar a magic layer? The Journal of the Acoustical Society of America 148 (2020) 3392–3396. [CrossRef] [PubMed] [Google Scholar]
  31. B. Tester: The optimization of modal sound attenuation in ducts, in the absence of mean flow. Journal of Sound and Vibration 27 (1973) 477–513. [CrossRef] [Google Scholar]
  32. B. Tester: The propagation and attenuation of sound in lined ducts containing uniform or “plug” flow. Journal of Sound and Vibration 28 (1973) 151–203. [CrossRef] [Google Scholar]
  33. Z. Zhang, H. Tiikoja, L. Peerlings, M. Abom: Experimental analysis on the “exact” Cremer impedance in rectangular ducts. SAE Technical Paper 2018-01-1523, 2018. https://doi.org/10.4271/2018-01-1523. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.