Issue
Acta Acust.
Volume 6, 2022
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 4
Number of page(s) 18
DOI https://doi.org/10.1051/aacus/2021055
Published online 26 January 2022
  1. F.L. Wightman, D.J. Kistler: Headphone simulation of free-field listening. I: Stimulus synthesis. The Journal of the Acoustical Society of America 85, 2 (1989) 858–867. https://doi.org/10.1121/1.397557. [CrossRef] [PubMed] [Google Scholar]
  2. M. Cuevas-Rodríguez, L. Picinali, D. González-Toledo, C. Garre, E. de la Rubia-Cuestas, L. Molina-Tanco, A. Reyes-Lecuona: 3D Tune-In Toolkit: An open-source library for real-time binaural spatialisation. PLoS One 14, 3 (2019) e0211899. https://doi.org/10.1371/journal.pone.0211899. [CrossRef] [PubMed] [Google Scholar]
  3. M.A. Gerzon: Periphony: With-height sound reproduction. Journal of the Audio Engineering Society 21, 1 (1973) 2–10. https://www.aes.org/e-lib/browse.cfm?elib=2012. [Google Scholar]
  4. F. Zotter, M. Frank: Ambisonics: A practical 3D audio theory for recording, studio production, sound reinforcement, and virtual reality, in Vol. 19 of Springer Topics in Signal Processing, Springer International Publishing, Cham. 2019. https://link.springer.com/10.1007/978-3-030-17207-7. [CrossRef] [Google Scholar]
  5. C. Schissler, P. Stirling, R. Mehra: Efficient construction of the spatial room impulse response, in 2017 IEEE Virtual Reality (VR). 2017, pp. 122–130. https://doi.org/10.1109/VR.2017.7892239. [CrossRef] [Google Scholar]
  6. M. Gorzel, A. Allen, I. Kelly, J. Kammerl, A. Gungormusler, H. Yeh, F. Boland: Efficient encoding and decoding of binaural sound with resonance audio, in 2019 AES International Conference on Immersive and Interactive Audio. 2019. https://www.aes.org/e-lib/browse.cfm?elib=20446. [Google Scholar]
  7. B. Rafaely: Fundamentals of Spherical Array Processing, Vol. 8. Springer, 2015. https://link.springer.com/book/10.1007/978-3-662-45664-4. [CrossRef] [Google Scholar]
  8. A. Avni, J. Ahrens, M. Geier, S. Spors, H. Wierstorf, B. Rafaely: Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution. The Journal of the Acoustical Society of America 133, 5 (2013) 2711–2721. https://doi.org/10.1121/1.4795780. [CrossRef] [PubMed] [Google Scholar]
  9. A. McKeag, D.S. McGrath: Sound field format to binaural decoder with head tracking, in AES Convention 6r. 1996. https://www.aes.org/e-lib/browse.cfm?elib=7477. [Google Scholar]
  10. B. Bernschütz, A.V. Giner, C. Pörschmann, J. Arend: Binaural reproduction of plane waves with reduced modal order, Acta Acustica United with Acustica 100, 5 (2014) 972–983. https://doi.org/10.3813/AAA.918777. [CrossRef] [Google Scholar]
  11. C. Schörkhuber, M. Zaunschirm, R. Höldrich: Binaural Rendering of Ambisonic Signals via Magnitude Least Squares, in Fortschritte Der Akustik-DAGA 2018, Munich, Germany. 2018, pp. 339–342. https://www.researchgate.net/publication/325080691_Binaural_Rendering_of_Ambisonic_Signals_via_Magnitude_Least_Squares. [Google Scholar]
  12. Z. Ben-Hur, J. Sheaffer, B. Rafaely: Joint sampling theory and subjective investigation of plane-wave and spherical harmonics formulations for binaural reproduction. Applied Acoustics 134 (2018) 138–144. https://doi.org/10.1016/j.apacoust.2018.01.016. [CrossRef] [Google Scholar]
  13. F. Brinkmann, A. Lindau, S. Weinzierl, S. van de Par, M. Müller-Trapet, R. Opdam, M. Vorländer: A high resolution and full-spherical head-related transfer function database for different head-above-torso orientations. Journal of the Audio Engineering Society 65, 10 (2017) 841–848. https://www.aes.org/e-lib/browse.cfm?elib=19357. [CrossRef] [Google Scholar]
  14. C. Guezenoc, R. Seguier: HRTF individualization: A survey, in AES Convention 145. 2018. https://www.aes.org/e-lib/browse.cfm?elib=19855. [Google Scholar]
  15. C. Pörschmann, J.M. Arend, F. Brinkmann: Directional equalization of sparse head-related transfer function sets for spatial upsampling. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27, 6 (2019) 1060–1071. https://doi.org/10.1109/TASLP.2019.2908057. [CrossRef] [Google Scholar]
  16. Z. Ben-Hur, D.L. Alon, R. Mehra, B. Rafaely: Efficient representation and sparse sampling of head-related transfer functions using phase-correction based on ear alignment. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27, 12 (2019) 2249–2262. https://doi.org/10.1109/TASLP.2019.2945479. [CrossRef] [Google Scholar]
  17. Z. Ben-Hur, D.L. Alon, B. Rafaely, R. Mehra: Loudness stability of binaural sound with spherical harmonic representation of sparse head-related transfer functions. EURASIP Journal on Audio, Speech, and Music Processing 2019, 1 (2019) 5. https://doi.org/10.1186/s13636-019-0148-x. [CrossRef] [Google Scholar]
  18. B. Bernschütz: Microphone arrays and sound field decomposition for dynamic binaural recording. Doctoral Thesis, Technische Universitüt Berlin, Berlin, 2016. https://doi.org/10.14279/depositonce-5082. [Google Scholar]
  19. T. Lübeck: Perceptual evaluation of mitigation approaches of errors due to spatial undersampling, in Binaural renderings of spherical microphone array data, Master Thesis, Chalmers University of Technology. 2019. https://www.hdl.handle.net/20.500.12380/300268. [Google Scholar]
  20. T. Lübeck, J.M. Arend, C. Pӧrschmann, H. Helmholz, J. Ahrens: Perceptual evaluation of mitigation approaches of impairments due to spatial undersampling in binaural rendering of spherical microphone array data: Dry acoustic environments, in International Conference on Digital Audio Effects 2020, Vienna. 2020. https://www.researchgate.net/publication/345020177_Perceptual_Evaluation_of_Mitigation_Approaches_of_Impairments_due_to_Spatial_Undersampling_in_Binaural_Rendering_of_Spherical_Microphone_Array_Data_Dry_Acoustic_Environments. [Google Scholar]
  21. T. McKenzie, D. Murphy, G. Kearney: An evaluation of preprocessing techniques for virtual loudspeaker binaural ambisonic rendering, in EAA Spatial Audio Signal Processing Symposium, Paris, France. 2019, pp. 149–154. https://doi.org/10.25836/sasp.2019.09. [Google Scholar]
  22. Z. Ben-Hur, D. Alon, R. Mehra, B. Rafaely: Binaural reproduction using bilateral Ambisonics, in 2020 AES international Conference on Audio for Virtual and Augmented Reality. 2020. https://www.aes.org/e-lib/browse.cfm?elib=20871. [Google Scholar]
  23. Z. Ben-Hur, D.L. Alon, R. Mehra, B. Rafaely: Binaural reproduction based on bilateral Ambisonics and ear-aligned HRTFs. IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2021) 901–913. https://doi.org/10.1109/TASLP.2021.3055038. [Google Scholar]
  24. F. Brinkmann, S. Weinzierl: Comparison of head-related transfer functions pre-processing techniques for spherical harmonics decomposition, in 2018 AES International Conference on Audio for Virtual and Augmented Reality. 2018. https://www.aes.org/e-lib/browse.cfm?elib=19683. [Google Scholar]
  25. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.x: A toolbox for reproducible research in auditory modeling. Submitted to Acta Acustica (2021). [Google Scholar]
  26. J. Reijniers, D. Vanderelst, C. Jin, S. Carlile, H. Peremans: An ideal-observer model of human sound localization. Biological Cybernetics 108, 2 (2014) 169–181. https://doi.org/10.1007/s00422-014-0588-4. [CrossRef] [PubMed] [Google Scholar]
  27. R. Baumgartner, P. Majdak: Decision making in auditory externalization perception: Model predictions for static conditions. Acta Acustica 5 (2021) 59. https://doi.org/10.1051/aacus/2021053. [CrossRef] [EDP Sciences] [Google Scholar]
  28. S. Jelfs, J.F. Culling, M. Lavandier: Revision and validation of a binaural model for speech intelligibility in noise. Hearing Research 275, 1 (2011) 96–104. https://doi.org/10.1016/j.heares.2010.12.005. [CrossRef] [PubMed] [Google Scholar]
  29. I. Engel: BinauralSH library for Matlab [Code]. Zenodo. 2021. https://doi.org/10.5281/zenodo.4633933. [Google Scholar]
  30. L. McCormack, S. Delikaris-Manias: Parametric first-order ambisonic decoding for headphones utilising the cross-pattern coherence algorithm, in EAA Spatial Audio Signal Processing Symposium, Paris, France. 2019, pp. 173–178. https://doi.org/10.25836/sasp.2019.26. [Google Scholar]
  31. Z. Ben-Hur, F. Brinkmann, J. Sheaffer, S. Weinzierl, B. Rafaely: Spectral equalization in binaural signals represented by order-truncated spherical harmonics. The Journal of the Acoustical Society of America 141, 6 (2017) 4087–4096. https://doi.org/10.1121/1.4983652. [CrossRef] [PubMed] [Google Scholar]
  32. O. Kirkeby, P.A. Nelson: Digital Filter Design for Inversion Problems in Sound Reproduction. Journal of the Audio Engineering Society 47, 7/8 (1999) 583–595. https://www.aes.org/e-lib/browse.cfm?elib=12098. [Google Scholar]
  33. I. Engel, D.L. Alon, P.W. Robinson, R. Mehra: The effect of generic headphone compensation on binaural renderings, in 2019 AES International Conference on Immersive and Interactive Audio. 2019. https://www.aes.org/e-lib/browse.cfm?elib=20387. [Google Scholar]
  34. I. Engel, D. Alon, K. Scheumann, R. Mehra: Listener preferred headphone frequency response for stereo and spatial audio content, in 2020 AES International Conference on Audio for Virtual and Augmented Reality. 2020. https://www.aes.org/e-lib/browse.cfm?elib=20868. [Google Scholar]
  35. C. Hold, H. Gamper, V. Pulkki, N. Raghuvanshi, I.J. Tashev: Improving binaural Ambisonics decoding by spherical harmonics domain tapering and coloration compensation, in ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019, pp. 261–265. https://doi.org/10.1109/ICASSP.2019.8683751. [Google Scholar]
  36. J. Daniel, J.-B. Rault, J.-D. Polack: Ambisonics encoding of other audio formats for multiple listening conditions, in AES Convention 105. 1998. https://www.aes.org/e-lib/browse.cfm?elib=8385. [Google Scholar]
  37. M.A. Gerzon: General metatheory of auditory localisation, in AES Convention 92. 1992. https://www.aes.org/e-lib/browse.cfm?elib=6827. [Google Scholar]
  38. T. McKenzie, D.T. Murphy, G. Kearney: Diffuse-field equalisation of binaural ambisonic rendering. Applied Sciences 8, 10 (2018) 1956. https://doi.org/10.3390/app8101956. [CrossRef] [Google Scholar]
  39. M.J. Evans, J.A.S. Angus, A.I. Tew: Analyzing head related transfer function measurements using surface spherical harmonics. The Journal of the Acoustical Society of America 104, 4 (1998) 2400–2411. https://doi.org/10.1121/1.423749. [CrossRef] [Google Scholar]
  40. J.M. Arend, F. Brinkmann, C. Pӧrschmann: Assessing spherical harmonics interpolation of time-aligned head-related transfer functions. Journal of the Audio Engineering Society 69, 1/2 (2021) 104–117. https://www.aes.org/e-lib/browse.cfm?elib=21019. [CrossRef] [Google Scholar]
  41. M. Zaunschirm, C. Schӧrkhuber, R. Hӧldrich: Binaural rendering of Ambisonic signals by head-related impulse response time alignment and a diffuseness constraint. The Journal of the Acoustical Society of America 143, 6 (2018) 3616–3627. https://doi.org/10.1121/1.5040489. [CrossRef] [PubMed] [Google Scholar]
  42. L. Rayleigh: XII. On our perception of sound direction. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 13, 74 (1907) 214–232. https://doi.org/10.1080/14786440709463595. [CrossRef] [Google Scholar]
  43. J. Vilkamo, T. Bäckstrӧm, A. Kuntz: Optimized covariance domain framework for time-frequency processing of spatial audio. Journal of the Audio Engineering Society 61, 6 (2013) 403–411. https://www.aes.org/e-lib/browse.cfm?elib=16831. [Google Scholar]
  44. I. Engel, D.F.M. Goodman, L. Picinali: Improving Binaural Rendering with Bilateral Ambisonics and MagLS, in Fortschritte Der Akustik-DAGA 2021, Vienna, Austria. 2021, pp. 1608–1611. https://www.researchgate.net/publication/355773450_Improving_Binaural_Rendering_with_Bilateral_Ambisonics_and_MagLS. [Google Scholar]
  45. M. Noisternig, A. Sontacchi, T. Musil, R. Holdrich: A 3D Ambisonic based binaural sound reproduction system, in 24th AES International Conference: Multichannel Audio, The New Reality. 2003. https://www.aes.org/e-lib/browse.cfm?elib=12314. [Google Scholar]
  46. I. Engel, C. Henry, S.V. Amengual Garí, P.W. Robinson, D. Poirier-Quinot, L. Picinali: Perceptual comparison of Ambisonics-based reverberation methods in binaural listening, in EAA Spatial Audio Signal Processing Symposium, Paris, France. 2019, pp. 121–126. https://doi.org/10.25836/sasp.2019.11. [Google Scholar]
  47. A.H. Stroud, D. Secrest: Gaussian Quadrature Formulas. Prentice-Hall, 1966. [Google Scholar]
  48. V.I. Lebedev: Spherical quadrature formulas exact to orders 25–29. Siberian Mathematical Journal 18, 1 (1977) 99–107. https://doi.org/10.1007/BF00966954. [CrossRef] [Google Scholar]
  49. R.H. Hardin, N.J.A. Sloane: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete & Computational Geometry 15, 4 (1996) 429–441. https://doi.org/10.1007/BF02711518. [Google Scholar]
  50. B. Bernschütz, C. Pӧrschmann, S. Spors, S. Weinzierl: SOFiA Sound Field Analysis Toolbox, in Proceedings of the International Conference on Spatial Audio (ICSA), Detmold, Germany. 2011. http://audiogroup.web.th-koeln.de/PUBLIKATIONEN/Bernschuetz_ICSA2011.pdf. [Google Scholar]
  51. B. Bernschütz: A spherical far field HRIR/HRTF compilation of the Neumann KU 100, in Proceedings of the 40th Italian (AIA) Annual Conference on Acoustics and the 39th German Annual Conference on Acoustics (DAGA). 2013, pp. 592–595. https://audiogroup.web.th-koeln.de/FILES/AIA-DAGA2013_HRIRs.pdf. [Google Scholar]
  52. R. Baumgartner, P. Majdak, B. Laback: Modeling soundsource localization in sagittal planes for human listeners. The Journal of the Acoustical Society of America 136, 2 (2014) 791. https://doi.org/10.1121/1.4887447. [CrossRef] [PubMed] [Google Scholar]
  53. B.F.G. Katz, M. Noisternig: A comparative study of interaural time delay estimation methods. The Journal of the Acoustical Society of America 135, 6 (2014) 3530–3540. https://doi.org/10.1121/1.4875714. [CrossRef] [PubMed] [Google Scholar]
  54. T. McKenzie, D. Murphy, G. Kearney: Interaural level difference optimisation of first-order binaural Ambisonic rendering, in 2019 AES International Conference on Immersive and Interactive Audio. 2019. https://www.aes.org/e-lib/browse.cfm?elib=20421. [Google Scholar]
  55. T. Leclère, M. Lavandier, F. Perrin: On the externalization of sound sources with headphones without reference to a real source. The Journal of the Acoustical Society of America 146, 4 (2019) 2309–2320. https://doi.org/10.1121/1.5128325. [CrossRef] [PubMed] [Google Scholar]
  56. C. Armstrong, T. McKenzie, D. Murphy, G. Kearney: A perceptual spectral difference model for binaural signals, in AES Convention 145. 2018. https://www.aes.org/e-lib/browse.cfm?elib=19722. [Google Scholar]
  57. B.R. Glasberg, B.C.J. Moore: Derivation of auditory filter shapes from notched-noise data. Hearing Research 47, 1 (1990) 103–138. https://doi.org/10.1016/0378-5955(90)90170-T. [CrossRef] [PubMed] [Google Scholar]
  58. R. Barumerli, P. Majdak, J. Reijniers, R. Baumgartner, M. Geronazzo, F. Avanzini: Predicting directional sound-localization of human listeners in both horizontal and vertical dimensions, in AES Convention 148. 2020. https://www.aes.org/e-lib/browse.cfm?elib=20777. [Google Scholar]
  59. T. May, S. van de Par, A. Kohlrausch: A probabilistic model for robust localization based on a binaural auditory front-end. IEEE Transactions on Audio, Speech, and Language Processing 19, 1 (2011) 1–13. https://doi.org/10.1109/TASL.2010.2042128. [CrossRef] [Google Scholar]
  60. P. Majdak, M.J. Goupell, B. Laback: 3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training. Attention, Perception, & Psychophysics 72, 2 (2010) 454–469. https://doi.org/10.3758/APP.72.2.454. [CrossRef] [PubMed] [Google Scholar]
  61. S. Werner, F. Klein, T. Mayenfels, K. Brandenburg: A summary on acoustic room divergence and its effect on externalization of auditory events, in 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX). 2016, pp. 1–6. https://doi.org/10.1109/QoMEX.2016.7498973. [Google Scholar]
  62. V. Best, R. Baumgartner, M. Lavandier, P. Majdak, N. Kopčo: Sound externalization: A review of recent research. Trends in Hearing 24 (2020). https://doi.org/10.1177/2331216520948390. [CrossRef] [Google Scholar]
  63. S. Klockgether, S. van de Par: Just noticeable differences of spatial cues in echoic and anechoic acoustical environments. The Journal of the Acoustical Society of America 140, 4 (2016) EL352–EL357. https://doi.org/10.1121/1.4964844. [CrossRef] [PubMed] [Google Scholar]
  64. I. Engel, D.F.M. Goodman, L. Picinali: Supplementary material for “Assessing HRTF preprocessing methods for Ambisonics rendering through perceptual models” [Dataset]. Zenodo. 2021. https://doi.org/10.5281/zenodo.5806405. [Google Scholar]
  65. J. Sheaffer, B. Rafaely: Equalization strategies for binaural room impulse response rendering using spherical arrays, in 2014 IEEE 28th Convention of Electrical Electronics Engineers in Israel (IEEEI). 2014, pp. 1–5. https://doi.org/10.1109/EEEI.2014.7005804. [Google Scholar]
  66. H. Lee, M. Frank, F. Zotter: Spatial and timbral fidelities of binaural Ambisonics decoders for main microphone array recordings, in 2019 AES International Conference on Immersive and Interactive Audio. 2019. https://www.aes.org/e-lib/browse.cfm?elib=2039. [Google Scholar]
  67. I. Engel, C. Henry, S.V. Amengual Garí, P.W. Robinson, L. Picinali: Perceptual implications of different Ambisonics based methods for binaural reverberation. The Journal of the Acoustical Society of America 149, 2 (2021) 895–910. https://doi.org/10.1121/10.0003437. [CrossRef] [PubMed] [Google Scholar]
  68. T. Lübeck, C. Pӧrschmann, J.M. Arend: Perception of direct sound, early reflections, and reverberation in auralizations of sparsely measured binaural room impulse responses, in 2020 AES International Conference on Audio for Virtual and Augmented Reality. 2020. https://www.aes.org/e-lib/browse.cfm?elib=20865. [Google Scholar]
  69. AMT Team: The Auditory Modeling Toolbox full package (version 1.1.0) [code]. https://sourceforge.net/projects/amtoolbox/files/AMT%201.x/amtoolbox-full-1.1.0.zip/download. [Google Scholar]
  70. B. Rafaely, A. Avni: Interaural cross correlation in a sound field represented by spherical harmonics. The Journal of the Acoustical Society of America 127, 2 (2010) 823–828. https://doi.org/10.1121/1.3278605. [CrossRef] [PubMed] [Google Scholar]
  71. E.G. Williams: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic Press, 1999. [Google Scholar]
  72. M. Poletti: Unified description of ambisonics using real and complex spherical harmonics, in Proc. Ambisonics Symp. 2009. https://web.iaem.at/ambisonics/symposium2009/proceedings/ambisym09-poletti-realandcomplexsh.pdf. [Google Scholar]
  73. C. Andersson: Headphone Auralization of Acoustic Spaces Recorded with Spherical Microphone Arrays. Master Thesis, Chalmers University of Technology, 2016. https://www.hdl.handle.net/20.500.12380/247969. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.