Open Access
Acta Acust.
Volume 6, 2022
Article Number 38
Number of page(s) 5
Section Physical Acoustics
Published online 14 September 2022
  1. K.Y. Hashimoto: Surface acoustic wave devices in telecommunications, Springer, Berlin Heidelberg, 2000. [CrossRef] [Google Scholar]
  2. F. Seifert, W.E. Bulst, C. Ruppel: Mechanical sensors based on surface acoustic waves. Sensors & Actuators A: Physical 44, 3 (1994) 231–239. [CrossRef] [Google Scholar]
  3. C. Zhou, Y. Yang, H. Jin, et al.: Surface acoustic wave resonators based on (002) AlN/Pt/diamond/silicon layered structure. Thin Solid Films 548 (Dec 21 2013) 425–428. [CrossRef] [Google Scholar]
  4. T. Takai, H. Iwamoto, Y. Takamine, et al.: Incredible high performance SAW resonator on novel multi-layerd substrate, in 2016 IEEE International Ultrasonics Symposium (IUS), IEEE, 2016. [Google Scholar]
  5. T.M. Reeder, D.E. Cullen: Surface-acoustic-wave pressure and temperature sensors. Proceedings of the IEEE 64, 5 (2005) 754–756. [Google Scholar]
  6. M. Kadota, T. Nakao, K. Nishiyama, et al.: Miniature surface acoustic wave devices with excellent temperature stability using high density metal electrodes and SiO2 film, in International Microwave Symposium Digest, IEEE, 2008. [Google Scholar]
  7. M. Akiyama, K. Kano, A. Teshigahara: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Applied Physics Letters 95, 16 (2009) 201203. [Google Scholar]
  8. F. Bénédic, M.B. Assouar, P. Kirsch, et al.: Very high frequency SAW devices based on nanocrystalline diamond and aluminum nitride layered structure achieved using e-beam lithography. Diamond & Related Materials 17, 4–5 (2008) 804–808. [CrossRef] [Google Scholar]
  9. Y. Fan, P. Kong, H. Qi, et al.: A surface acoustic wave response detection method for passive wireless torque sensor. AIP Advances 8, 1 (2018) 015321. [CrossRef] [Google Scholar]
  10. D. Shaoxu, Q. Mengke, C. Cong, et al.: High-temperature high-sensitivity AlN-on-SOI Lamb wave resonant strain sensor. AIP Advances 8, 6 (2018) 065315. [CrossRef] [Google Scholar]
  11. H. Xu, S. Dong, W. Xuan, et al.: Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film. Applied Physics Letters 112, 9 (2018) 093502. [CrossRef] [Google Scholar]
  12. S. Chen, Y. Zhang, S. Lin, et al.: Study on the electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices. Ultrasonics 54, 2 (2014) 604–608. [CrossRef] [PubMed] [Google Scholar]
  13. H. Nakahata, A. Hachigo, K. Higaki, et al.: Theoretical study on SAW characteristics of layered structures including a diamond layer. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control 42, 3 (2002) 362–375. [Google Scholar]
  14. D.T. Phan, G.S. Chung: FEM modeling SAW humidity sensor based on ZnO/IDTs/AlN/Si structures, in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, IEEE, 2011. [Google Scholar]
  15. W.P. Jakubik, M.W. Urbańczyk, S. Kochowski, et al.: Bilayer structure for hydrogen detection in a surface acoustic wave sensor system. Sensors & Actuators B: Chemical 82, 2–3 (2002) 265–271. [CrossRef] [Google Scholar]
  16. G.S. Chung, D.T. Phan: Finite element modeling of surface acoustic waves in piezoelectric thin films. Journal- Korean Physical Society 57, 3 (2010) 446–450. [CrossRef] [Google Scholar]
  17. T. Li, H. Hong, X. Gang, et al.: Pressure and temperature microsensor based on surface acoustic wave in TPMS, InTech, 2010. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.