Open Access
Acta Acust.
Volume 6, 2022
Article Number 44
Number of page(s) 15
Section Structural Acoustics
Published online 28 September 2022
  1. D.J. Mead: Passive vibration control, John Wiley & Sons Ltd, Chichester, England, 1999. [Google Scholar]
  2. R.A. Mangiarotty: Acoustic radiation damping of vibrating structures. Journal of the Acoustical Society of America 35, 3 (1963) 369–377. [CrossRef] [Google Scholar]
  3. B.L. Clarkson, K.T. Brown: Acoustic radiation damping. Journal of Vibration, Acoustics, Stress, and Reliability in Design 107 (1985) 357–360. [CrossRef] [Google Scholar]
  4. O.P. Hentschel, M. Bonhage, L. Panning-von Scheidt, J. Wallaschek, M. Denk, P.A. Masserey: Analysis of an experimental setup for structural damping identification. Journal of Theoretical and Applied Mechanics 54, 1 (2016) 27–39. [CrossRef] [Google Scholar]
  5. R. Zhou, M.J. Crocker: Sound transmission loss of foam-filled honeycomb sandwich panels using statistical energy analysis and theoretical and measured dynamic properties. Journal of Sound and Vibration 329, 6 (2010) 673–686. [CrossRef] [Google Scholar]
  6. C. Scrosati, F. Scamoni, M. Bassanino, M. Mussin, G. Zambon: Uncertainty analysis by a round robin test of field measurements of sound insulation in buildings: single numbers and low frequency bands evaluation – airborne sound insulation. Noise Control Engineering Journal 61, 3 (2013) 291–306. [CrossRef] [Google Scholar]
  7. P. Bonfiglio, F. Pompoli: Numerical methodologies for optimizing and predicting the low frequency behavior of anechoic chambers. Journal of the Acoustical Society of America 134, 1 (2013) 285–291. [CrossRef] [PubMed] [Google Scholar]
  8. S.K. Baydoun, S. Marburg: Investigation of radiation damping in sandwich structures using finite and boundary element methods and a nonlinear eigensolver. Journal of the Acoustical Society of America 147, 3 (2020) 2020–2034. [CrossRef] [PubMed] [Google Scholar]
  9. M.J. Crocker, A.J. Price: Sound transmission using statistical energy analysis, Journal of Sound and Vibration 9, 3 (1969) 469–486. [CrossRef] [Google Scholar]
  10. K. Renji, P.S. Nair: On acoustic radiation resistance of plates. Journal of Sound and Vibration 212, 4 (1998) 583–598. [CrossRef] [Google Scholar]
  11. A. Billon, C. Foy, J. Picaut, V. Valeau, A. Sakout: Modeling the sound transmission between rooms coupled through partition walls by using a diffusion model. Journal of the Acoustical Society of America 123, 6 (2008) 4261–4271. [CrossRef] [PubMed] [Google Scholar]
  12. E. Reynders: Parametric uncertainty quantification of sound insulation values. Journal of the Acoustical Society of America 135, 4 (2014) 1907–1918. [CrossRef] [PubMed] [Google Scholar]
  13. A. Arjunan, C.J. Wang, K. Yahiaoui, D.J. Mynors, T. Morgan, V.B. Nguyen, M. English: Development of a 3d finite element acoustic model to predict the sound reduction index of stud based double-leaf walls. Journal of Sound and Vibration 333 (2014) 6140–6155. [CrossRef] [Google Scholar]
  14. C.W. Isaac, M. Pawelczyk, S. Wrona: Comparative study of sound transmission losses of sandwich composite double panel walls. Applied Sciences 10, 4 (2020) 1543. [CrossRef] [Google Scholar]
  15. M. Okuma: Low frequency noise and vibration analysis of boat based on experiment-based substructure modeling and synthesis, in Vibro-Impact Dynamics of Ocean Systems and Related Problems, R.A. Ibrahim, V.I. Babitsky, M. Okuma, Eds., Springer, Berlin, Heidelberg. 2009, pp. 203–214. [CrossRef] [Google Scholar]
  16. T. Tomatsu, T. Otsuka, M. Okuma, T. Okada, T. Ikeno, K. Shiomi: Sound-radiation analysis for boat hull based on hammering test and bem, in Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, September 24–28, 2005, Long Beach, California USA, pp. 259–264. [Google Scholar]
  17. M. Shepherd, J.B. Fahnline, T.P. Dare, S.A. Hambric, R.L. Campbell: A hybrid approach for simulating fluid loading effects on structures using experimental modal analysis and the boundary element method. Journal of Acoustical Society of America 138, 5 (2015) 3073–3080. [CrossRef] [PubMed] [Google Scholar]
  18. M. Xia, S. Li: A combined approach for active vibration control of fluid-loaded structures using the receptance method. Archive of Applied Mechanics 88 (2018) 1683–1694. [CrossRef] [Google Scholar]
  19. N.B. Roozen, Q. Leclère, D. Urbán, T. Méndez Echenagucia, P. Block, M. Rychtáriková, C. Glorieux: Assessment of the airborne sound insulation from mobility vibration measurements; a hybrid experimental numerical approach. Journal of Sound and Vibration 432 (2018) 680–698. [CrossRef] [Google Scholar]
  20. C.B. Goates, C.B. Jones, S.D. Sommerfeldt, J.D. Blotter: Sound power of vibrating cylinders using the radiation resistance matrix and a laser vibrometer. Journal of the Acoustical Society of America 148, 6 (2020) 3553–3561. [CrossRef] [PubMed] [Google Scholar]
  21. T.P. Bates, I.C. Bacon, J.D. Blotter, S.D. Sommerfeldt: Vibration-based sound power measurements of arbitrarily curved panels. Journal of the Acoustical Society of America 151, 2 (2022) 1171–1179. [CrossRef] [PubMed] [Google Scholar]
  22. S. Kirkup: The boundary element method in acoustics: a survey. Applied Sciences 9, 8 (2019) 1642. [CrossRef] [Google Scholar]
  23. N. Trompette, J.-L. Barbry, F. Sgard, H. Nelisse: Sound transmission loss of rectangular and slit-shaped apertures: experimental results and correlation with a modal model. Journal of the Acoustical Society of America 125, 1 (2009) 31–41. [CrossRef] [PubMed] [Google Scholar]
  24. T. Shimizu, Y. Kawai, D. Takahashi: Numerical analyses and experimental evaluation of reduction technique for sound transmission through gaps. Applied Acoustics 99 (2015) 97–109. [CrossRef] [Google Scholar]
  25. S. Marburg, B. Nolte: A unified approach to finite and boundary element discretization in linear time-harmonic acoustics, in Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods, S. Marburg, B. Nolte, Eds., Springer, Berlin, Germany. 2008, pp. 1–34. [Google Scholar]
  26. A. de Boer, A.H. van Zuijlen, H. Bijl: Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Computer Methods in Applied Mechanics and Engineering 197 (2008) 4284–4297. [CrossRef] [Google Scholar]
  27. H. Peters, S. Marburg, N. Kessissoglou: Structural-acoustic coupling on non-conforming meshes with quadratic shape functions. International Journal for Numerical Methods in Engineering 91, 1 (2012) 27–38. [CrossRef] [Google Scholar]
  28. B. Flemisch, M. Kaltenbacher, B.I. Wohlmuth: Elasto-acoustic and acoustic-acoustic coupling on non-matching grids. International Journal for Numerical Methods in Engineering 67, 13 (2006) 1791–1810. [CrossRef] [Google Scholar]
  29. P. Rong, M. Abele, O. von Estorff: Comparison of different methods for simulating acoustic diffuse field excitations. Acta Acustica United with Acustica 99 (2013) 931–939. [CrossRef] [Google Scholar]
  30. A. Panteghini, A. Feriani, E.A. Piana, N.B. Roozen: Evaluation of the sound reduction index of flat panels through FE models accounting for fluid-structure interaction: stochastic versus plane wave superposition methods. Journal of Sound and Vibration 509 (2021). [Google Scholar]
  31. B. Rafaely: Spatial-temporal correlation of a diffuse sound field. Journal of the Acoustical Society of America 107, 6 (2000) 3254–3258. [CrossRef] [PubMed] [Google Scholar]
  32. F. Fahy, P. Gardonio: Sound and structural vibration, Academic Press, Oxford, United Kingdom, 2007. [Google Scholar]
  33. P. Blaschke, T. Mallareddy, D. Alarcòn: Application of a scalable automatic modal hammer and a 3D scanning laser doppler vibrometer on turbine blades, in Proceedings of the 4th VDI conference in vibration analysis and identification, VDI Berichte, vol. 2259, 2016. [Google Scholar]
  34. M. Ochmann, H. Brick: Acoustical radiation and scattering above an impedance plane, in Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods S. Marburg, B. Nolte, Eds., Springer, Berlin, Germany. 2008, pp. 459–494. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.