Issue
Acta Acust.
Volume 6, 2022
Topical Issue - Aeroacoustics: state of art and future trends
Article Number 45
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2022041
Published online 14 October 2022
  1. D. Siano, M. Prati, M. Costagliola, M. Panza: Evaluation of noise level inside cab of a bi-fuel passenger vehicle. WSEAS Transactions on Applied and Theoretical Mechanics 10 (2015) 220–226. [Google Scholar]
  2. R. Fan, G. Meng, J. Yang, C. He: Internal noise reduction in railway carriages: A case study in China. Transportation Research Part D: Transport and Environment 13 (2008) 213–220. [CrossRef] [Google Scholar]
  3. F. Letourneaux, S. Guerrand, F. Poisson: Assessment of the acoustical comfort in high-speed trains at the SNCF: integration of subjective parameters. Journal of Sound and Vibration 231 (2000) 839–846. [CrossRef] [Google Scholar]
  4. D. Swart, A. Bekker: The relationship between consumer satisfaction and psychoacoustics of electric vehicle signature sound. Applied Acoustics 145 (2019) 167–175. [CrossRef] [Google Scholar]
  5. D.-U. Yun, S.-K. Lee: Objective evaluation of the knocking sound of a diesel engine considering the temporal and frequency masking effect simultaneously. Journal of Sound and Vibration 397 (2017) 282–297. [CrossRef] [Google Scholar]
  6. F.G. Praticò, P.G. Briante, G. Speranza: Acoustic impact of electric vehicles, in 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), IEEE, 2020, pp. 7–12. [CrossRef] [Google Scholar]
  7. D. Siwiak, F. James: Designing interior audio cues for hybrid and electric vehicles, in Audio Engineering Society Conference: 36th International Conference: Automotive Audio, Audio Engineering Society, 2009. [Google Scholar]
  8. X. Chen, J. Lin, H. Jin, Y. Huang, Z. Liu: The psychoacoustics annoyance research based on EEG rhythms for passengers in high-speed railway. Applied Acoustics 171 (2021) 107575. [CrossRef] [Google Scholar]
  9. K. Genuit: Particular importance of psychoacoustics for sound design of quiet vehicles, in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, vol. 2011, 2011, pp. 2908–2914. [Google Scholar]
  10. S. Schoder, M. Kaltenbacher: Hybrid aeroacoustic computations: state of art and new achievements. Journal of Theoretical and Computational Acoustics 27 (2019) 1950020. [CrossRef] [Google Scholar]
  11. T. Colonius: Modeling artificial boundary conditions for compressible flow. Annual Review of Fluid Mechanics 36 (2004) 315–345. [CrossRef] [Google Scholar]
  12. M. Piellard, B. Coutty: Application of a hybrid computational aeroacoustics method to an automotive blower, in Vehicle Thermal Management Systems Conference and Exhibition (VTMS10), Woodhead Publishing, 2011, pp. 447–455. [CrossRef] [Google Scholar]
  13. S. Schoder, C. Junger, M. Kaltenbacher: Computational aeroacoustics of the EAA benchmark case of an axial fan: Acta Acustica 4 (2020) 22. [CrossRef] [EDP Sciences] [Google Scholar]
  14. M. Tautz, K. Besserer, S. Becker, M. Kaltenbacher: Source formulations and boundary treatments for Lighthill’s analogy applied to incompressible flows. AIAA Journal 56 (2018) 2769–2781. [CrossRef] [Google Scholar]
  15. M. Kaltenbacher, M. Escobar, S. Becker, I. Ali: Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustic analogy. International Journal for Numerical Methods in Fluids 63 (2010) 1103–1122. [Google Scholar]
  16. A.A. Oberai, F. Roknaldin, T.J. Hughes: Computational procedures for determining structural-acoustic response due to hydrodynamic sources. Computer Methods in Applied Mechanics and Engineering 190 (2000) 345–361. [Google Scholar]
  17. S. Schoder, M. Weitz, P. Maurerlehner, A. Hauser, S. Falk, S. Kniesburges, M. Döllinger, M. Kaltenbacher: Hybrid aeroacoustic approach for the efficient numerical simulation of human phonation. The Journal of the Acoustical Society of America 147 (2020) 1179–1194. [CrossRef] [PubMed] [Google Scholar]
  18. S. De Reboul, N. Zerbib, A. Heather: Use openFOAM coupled with finite and boundary element formulations for computational aero-acoustics for ducted obstacles, in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 259, Institute of Noise Control Engineering, 2019, pp. 4811–4826. [Google Scholar]
  19. S. De Reboul, E. Perrey-Debain, S. Moreau, N. Zerbib: Hybrid methods for duct aeroacoustics simulations, in Forum Acusticum, Lyon, France, December, 2020, pp. 387–391. [Google Scholar]
  20. J. Ryu, C. Cheong, S. Kim, S. Lee: Computation of internal aerodynamic noise from a quick-opening throttle valve using frequency-domain acoustic analogy. Applied Acoustics 66 (2005) 1278–1308. [CrossRef] [Google Scholar]
  21. F. Crouzet, P. Lafon, T. Buchal, D. Laurence: Aerodynamic noise prediction in internal flows using LES and linear Euler equations, in 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, Breckenridge, Colorado, USA, June, 2002, p. 2568. [Google Scholar]
  22. M. Piellard, C. Bailly: Validation of a hybrid CAA method. Application to the case of a ducted diaphragm at low Mach number, in 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008, p. 2873. [Google Scholar]
  23. C. Bailly, P. Lafon, S. Candel: Computation of noise generation and propagation for free and confined turbulent flows, in Aeroacoustics Conference, State College, Pennsylvania, USA, May, 1996, p. 1732. [Google Scholar]
  24. M. Bayati, M. Tadjfar: High Helmholtz sound prediction generated by confined flows and propagation within ducts. International Journal of Acoustics and Vibration 312 (2015) 47. [Google Scholar]
  25. S. Benhamadouche, M. Arenas, W. Malouf: Wall-resolved large eddy simulation of a flow through a square-edged orifice in a round pipe at Re = 25,000. Nuclear Engineering and Design 312 (2017) 128–136. [CrossRef] [Google Scholar]
  26. O. Kårekull, G. Efraimsson, M. Åbom: Prediction model of flow duct constriction noise. Applied Acoustics 82 (2014) 45–52. [CrossRef] [Google Scholar]
  27. E. Longatte, P. Lafon, S. Candel: Computation of noise generation by turbulence in internal flows, in 4th AIAA/CEAS Aeroacoustics Conference, Toulouse, France, June, 1998, p. 2332. [Google Scholar]
  28. W. Zhao, C. Zhang, S.H. Frankel, L. Mongeau: Computational aeroacoustics of phonation, part I: computational methods and sound generation mechanisms. The Journal of the Acoustical Society of America 112 (2002) 2134–2146. [CrossRef] [PubMed] [Google Scholar]
  29. M. Bull, N. Agarwal: Characteristics of the flow separation due to an orifice plate in fully-developed turbulent pipe-flow, in Proc. 8th Australasian Fluid Mechanics Conference, University of Newcastle, Australia, 1983. [Google Scholar]
  30. R. Lacombe, P. Moussou, S. Föller, G. Jasor, W. Polifke, Y. Aurégan: Experimental and numerical investigations on the whistling ability of an orifice in a flow duct, in Exergy, Cairo, Egypt, vol. 2. July, 2010, p. 1. [Google Scholar]
  31. S. Sack: Experimental and numerical multi-port eduction for duct acoustics. PhD thesis, KTH Royal Institute of Technology, Stockholm, 2017. [Google Scholar]
  32. P. Testud, Y. Aurégan, P. Moussou, A. Hirschberg: The whistling potentiality of an orifice in a confined flow using an energetic criterion. Journal of Sound and Vibration 325 (2009) 769–780. [CrossRef] [Google Scholar]
  33. M. Piellard, C. Bailly: Several computational aeroacoustics solutions for the ducted diaphragm at low Mach number, in 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, June, 2010, p. 3996. [Google Scholar]
  34. X. Gloerfelt, P. Lafon: Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number. Computers & Fluids 37 (2008) 388–401. [CrossRef] [Google Scholar]
  35. R. Fearn, T. Mullin, K. Cliffe: Nonlinear flow phenomena in a symmetric sudden expansion. Journal of Fluid Mechanics 211 (1990) 595–608. [CrossRef] [Google Scholar]
  36. F. Durst, J. Pereira, C. Tropea: The plane symmetric sudden-expansion flow at low Reynolds numbers. Journal of Fluid Mechanics 248 (1993) 567–581. [CrossRef] [Google Scholar]
  37. E. Wahba: Iterative solvers and inflow boundary conditions for plane sudden expansion flows. Applied mathematical modelling 31 (2007) 2553–2563. [CrossRef] [Google Scholar]
  38. C. Bogey, C. Bailly, D. Juvé: Computation of flow noise using source terms in linearized Euler’s equations. AIAA Journal 40 (2002) 235–243. [CrossRef] [Google Scholar]
  39. M. Kaltenbacher: Numerical simulation of mechatronic sensors and actuators: finite elements for computational multiphysics, vol. 3, Springer, 2015. [Google Scholar]
  40. H. Kobayashi: The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Physics of Fluids 17 (2005) 045104. [CrossRef] [Google Scholar]
  41. H. Kobayashi, F. Ham, X. Wu: Application of a local SGS model based on coherent structures to complex geometries. International Journal of Heat and Fluid Flow 29 (2008) 640–653. [CrossRef] [Google Scholar]
  42. M.J. Lighthill: On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 211 (1952) 564–587. [Google Scholar]
  43. B. Kaltenbacher, M. Kaltenbacher, I. Sim: A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. Journal of Computational Physics 235 (2013) 407–422. [CrossRef] [PubMed] [Google Scholar]
  44. R. Ewert, W. Schröder: Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics 188 (2003) 365–398. [Google Scholar]
  45. A. Hüppe, J. Grabinger, M. Kaltenbacher, A. Reppenhagen, G. Dutzler, W. Kühnel: A non-conforming finite element method for computational aeroacoustics in rotating systems, in 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia, USA, June, 2014, pp. 2014–2739. [Google Scholar]
  46. M. Kaltenbacher, A. Hüppe, A. Reppenhagen, F. Zenger, S. Becker: Computational aeroacoustics for rotating systems with application to an axial fan. AIAA Journal 55 (2017) 3831–3838. [Google Scholar]
  47. S. Schoder, P. Maurerlehner, A. Wurzinger, A. Hauser, S. Falk, S. Kniesburges, M. Döllinger, M. Kaltenbacher: Aeroacoustic sound source characterization of the human voice production-perturbed convective wave equation. Applied Sciences 11 (2021) 2614. [CrossRef] [Google Scholar]
  48. H.S. Ribner: Aerodynamic sound from fluid dilatations: A theory of the sound from jets and other flows. UTIA Report, No. 86, 1962. AFOSR TN 3430 [Google Scholar]
  49. AVL FIRE™: 2022. www.avl.com/fire [Google Scholar]
  50. S. Schoder, A. Wurzinger, C. Junger, M. Weitz, C. Freidhager, K. Roppert, M. Kaltenbacher: Application limits of conservative source interpolation methods using a low Mach number hybrid aeroacoustic workflow. Journal of Theoretical and Computational Acoustics 29, 01 (2021) 2050032. [CrossRef] [Google Scholar]
  51. openCFS – finite element multiphysics solver, 2022. www.opencfs.org [Google Scholar]
  52. W. Sutherland: The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 36, 223 (1893) 507–531. [CrossRef] [Google Scholar]
  53. P. Maurerlehner, S. Schoder, S. Floss, J. Tieber, H. Steiner, G. Brenn, M. Kaltenbacher: Validation setup for the investigation of aeroacoustic and vibroacoustic sound emission of confined turbulent flows, in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, vol. 263 (2021) 519–525. [CrossRef] [Google Scholar]
  54. T. McQueen, D. Burton, J. Sheridan, M. Thompson: High Reynolds number backward-facing step flow control, in 22nd Australasian Fluid Mechanics Conference AFMC2020, Brisbane, Queensland, Australia, December, 2020. [Google Scholar]
  55. M. Lasota, P. Šidlof, M. Kaltenbacher, S. Schoder: Impact of the sub-grid scale turbulence model in aeroacoustic simulation of human voice. Applied Sciences 11 (2021) 1970. [CrossRef] [Google Scholar]
  56. G.I. Taylor: The spectrum of turbulence. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 164 (1938) 476–490. [Google Scholar]
  57. C. Geng, G. He, Y. Wang, C. Xu, A. Lozano-Durán, J.M. Wallace: Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Physics of Fluids 27 (2015) 025111. [CrossRef] [Google Scholar]
  58. S. Schoder, M. Kaltenbacher, É. Spieser, H. Vincent, C. Bogey, C. Bailly: Aeroacoustic wave equation based on pierce’s operator applied to the sound generated by a mixing layer, in 28th AIAA/CEAS Aeroacoustics 2022 Conference, 2022, p. 2896. [Google Scholar]
  59. P. Welch: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15 (1967) 70–73. [CrossRef] [Google Scholar]
  60. A. Michalke: On the propagation of sound generated in a pipe of circular cross-section with uniform mean flow. Journal of Sound and Vibration 134 (1989) 203–234. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.