Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 46
Number of page(s) 10
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2022042
Published online 07 October 2022
  1. ISO 12913-1: Acoustics soundscape. Part 1. Definition and conceptual framework. ISO, 2018. [Google Scholar]
  2. J. Kang, B. Schulte-Fortkamp: Soundscape and the built environment. CRC Press, Boca Raton, 2016. https://doi.org/10.1201/b19145. ISBN 9781482226324. [Google Scholar]
  3. A. Fiebig, P. Jordan, C.C. Moshona: Assessments of acoustic environments by emotions – the application of emotion theory in soundscape. Frontiers in Psychology 11 (2020). https://doi.org/10.3389/fpsyg.2020.573041. ISSN 16641078 [CrossRef] [Google Scholar]
  4. R. Cain, P. Jennings, J. Poxon: The development and application of the emotional dimensions of a soundscape. Applied Acoustics 74, 2 (2013) 232–239. https://doi.org/10.1016/j.apacoust.2011.11.006. ISSN 0003-682X [CrossRef] [Google Scholar]
  5. F. Aletta, J. Kang, Ö. Axelsson: Soundscape descriptors and a conceptual framework for developing predictive soundscape models. Landscape and Urban Planning 149 (2016) 65–74. https://doi.org/10.1016/j.landurbplan.2016.02.001. ISSN 0169-2046 [CrossRef] [Google Scholar]
  6. ISO 12913-2: Acoustics. Soundscape. Part 2. Data Collection and reporting requirements. ISO, 2019. [Google Scholar]
  7. Ö. Axelsson, M.E. Nilsson, B. Berglund: A principal components model of soundscape perception. Journal of the Acoustical Society of America 128, 5 (2010) 2836–2846. https://doi.org/10.1121/1.3493436. ISSN 0001-4966 [CrossRef] [PubMed] [Google Scholar]
  8. M.S. Engel, A. Fiebig, C. Pfaffenbach, J. Fels: A review of the use of psychoacoustic indicators on soundscape studies. Current Pollution Reports 7 (2021) 359–378. https://doi.org/10.1007/s40726-021-00197-1. [CrossRef] [Google Scholar]
  9. M. Lionello, F. Aletta, J. Kang: A systematic review of prediction models for the experience of urban soundscapes. Applied Acoustics 170 (2020). https://doi.org/10.1016/j.apacoust.2020.107479. [CrossRef] [Google Scholar]
  10. T.H. Park, J.H. Lee, J. You, M.J. Yoo, J. Turner: Towards soundscape information retrieval (SIR), in Proceedings of the 11th Sound and Music Computing Conference, SMC, 14–20 September 2014, Athens, Greece, pp. 1218–1225. ISBN 9789604661374 [Google Scholar]
  11. J. Bergner, S. Preihs, J. Peissig: Soundscape fingerprinting – methods and parameters for acoustic assessment, in Fortschritte der Akustik – DAGA, 15–18 August 2021, Vienna, Austria. [Google Scholar]
  12. S. Preihs, J. Bergner, D. Schössow, J. Peissig: On predicting the perceived annoyance of wind turbine sound, in Fortschritte der Akustik – DAGA, 15–18 August 2021, Vienna, Austria. [Google Scholar]
  13. J. Bergner, D. Schössow, S. Preihs, Y. Wycisk, K. Sander, R. Kopiez, F. Platz: Analyzing the degree of immersion of music reproduction by means of acoustic fingerprinting, in Fortschritte der Akustik – DAGA, 21–24 March 2022, Stuttgart, Germany. [Google Scholar]
  14. C. Guastavino, B.F.G. Katz, J.-D. Polack, D.J. Levitin, D. Dubois: Ecological validity of soundscape reproduction. Acta Acustica United with Acustica 91 (2004) 333–341. [Google Scholar]
  15. J. Bergner, S. Preihs, J. Peissig: Investigation on ecological validity within higher order ambisonics reproductions of wind turbine noisescapes, in Proc. of Internoise, 16–19 June 2019, Madrid, Spain. [Google Scholar]
  16. N. Poschadel, C. Gill, S. Preihs, J. Peissig: CNN-based multi-class multi-label classification of sound scenes in the context of wind turbine sound emission measurements, in Proc. of Internoise, 1–5 August 2021, Washington, DC, USA. [Google Scholar]
  17. J. Blauert: Spatial hearing. The MIT Press, 1997. ISBN 0-262-02413-6 [Google Scholar]
  18. B. Rafaely: Fundamentals of spherical array processing. Springer, Berlin, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-45664-4. ISBN 978-3-662-45663-7 [CrossRef] [Google Scholar]
  19. B. Bernschütz: A spherical far field HRIR/HRTF compilation of the Neumann KU 100, in Fortschritte der Akustik – AIA-DAGA, 1821 March 2013, Merano, Italy, pp. 592–595. http://www.audiogroup.web.fh-koeln.de/FILES/AIA-DAGA2013_HRIRs.pdf [Google Scholar]
  20. D. Rudrich: IEM Plug-in Suite. IEM, 2021. https://plugins.iem.at/ [Google Scholar]
  21. C. Schörkhuber, M. Zaunschirm, R. Höldrich: Binaural rendering of Ambisonic signals via magnitude least squares, in Fortschritte der Akustik – DAGA, 19–22 March 2018, Munich, Germany, pp. 339–342. [Google Scholar]
  22. V. Pulkki: Spatial sound reproduction with directional audio coding. Journal of the Audio Engineering Society 55, 6 (2007) 503–516. [Google Scholar]
  23. A. Weisser, J.M. Buchholz, C. Oreinos, J. Badajoz-Davila, J. Galloway, T. Beechey, G. Keidser: The ambisonic recordings of typical environments (ARTE) database. Acta Acustica United with Acustica 105 (2019) 695–713. https://doi.org/10.3813/AAA.919349. [CrossRef] [Google Scholar]
  24. M. Green, D. Murphy: Eigenscape: a database of spatial acoustic scene recordings. Applied Sciences 7, 12 (2017) 1204. https://doi.org/10.3390/app7111204. ISSN 2076-3417 [CrossRef] [Google Scholar]
  25. Soundfield by Røde: Ambisonic sound library, 2022. https://library.soundfield.com/ [Google Scholar]
  26. EBU-R 128: Loudness normalisation and permitted maximum level of audio signals, EBU, 2014. [Google Scholar]
  27. ITU-R BS.1770-4: Algorithms to measure audio programme loudness and true-peak audio level. ITU, 2015. [Google Scholar]
  28. EBU Tech 3342: Loudness range: a measure to supplement EBU R 128 loudness normalization. EBU, 2016. [Google Scholar]
  29. G. Rey Gozalo, J. Trujillo Carmona, J.M. Barrigón Morillas, R. Vílchez-Gómez, V. Gómez Escobar: Relationship between objective acoustic indices and subjective assessments for the quality of soundscapes. Applied Acoustics 97 (2015) 1–10. https://doi.org/10.1016/j.apacoust.2015.03.020. ISSN 0003-682X [CrossRef] [Google Scholar]
  30. J.Y. Jeon, J.Y. Hong: Classification of urban park soundscapes through perceptions of the acoustical environments. Landscape and Urban Planning 141 (2015) 100–111. https://doi.org/10.1016/j.landurbplan.2015.05.005. ISSN 0169-2046 [CrossRef] [Google Scholar]
  31. A. Preis, J. Kociński, H. Hafke-Dys, M. Wrzosek: Audio-visual interactions in environment assessment. Science of the Total Environment 523 (2015) 191–200. https://doi.org/10.1016/j.scitotenv.2015.03.128. ISSN 18791026 [CrossRef] [Google Scholar]
  32. M.E. Nilsson, D. Botteldooren, B. De Coensel: Acoustic indicators of soundscape quality and noise annoyance in outdoor urban areas, in 19th International Congress on Acoustics, ICA, 2–7 September 2007, Madrid, Spain. [Google Scholar]
  33. K. Persson Waye, E. Öhrström: Psycho-acoustic characters of relevance for annoyance of wind turbine noise. Journal of Sound and Vibration 250, 1 (2002) 65–73. https://doi.org/10.1006/jsvi.2001.3905. ISSN 0022-460X [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.