Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 60
Number of page(s) 18
Section Nonlinear Acoustics, Macrosonics
DOI https://doi.org/10.1051/aacus/2022056
Published online 22 December 2022
  1. O. Gendelman, L.I. Manevitch, A.F. Vakakis, R. M’Closkey: Energy pumping in nonlinear mechanical oscillators: Part I – dynamics of the underlying hamiltonian systems. Journal of Applied Mechanics 68, 1 (2000) 34–41. https://doi.org/10.1115/1.1345524. [Google Scholar]
  2. A.F. Vakakis, O. Gendelman: Energy pumping in nonlinear mechanical oscillators: Part II – resonance capture. Journal of Applied Mechanics 68, 1 (2000) 42–48. https://doi.org/10.1115/1.1345525. [Google Scholar]
  3. B. Cochelin, P. Herzog, P.-O. Mattei: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Comptes Rendus Mécanique 334, 11 (2006) 639–644. https://doi.org/10.1016/j.crme.2006.08.005. [CrossRef] [Google Scholar]
  4. R. Bellet, B. Cochelin, P. Herzog, P.-O. Mattei: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. Journal of Sound and Vibration 329, 14 (2010) 2768–2791. https://doi.org/10.1016/j.jsv.2010.01.029. [CrossRef] [Google Scholar]
  5. R. Mariani, S. Bellizi, B. Cochelin, P. Herzog, P.-O. Mattei: Toward an adjustable nonlinear low frequency acoustic absorber. Journal of Sound and Vibration 330, 22 (2011) 5245–5258. https://doi.org/10.1016/j.jsv.2011.03.034. [CrossRef] [Google Scholar]
  6. R. Bellet, B. Cochelin, R. Côte, P.-O. Mattei: Enhancing the dynamic range of targeted energy transfer in acoustics using several nonlinear membrane absorbers. Journal of Sound and Vibration 331, 26 (2012) 5657–5668. https://doi.org/10.1016/j.jsv.2012.07.013. [CrossRef] [Google Scholar]
  7. J. Shao, B. Cochelin: Theoretical and numerical study of targeted energy transfer inside an acoustic cavity by a non-linear membrane absorber. International Journal of Non-Linear Mechanics 64 (2014) 85–92. https://doi.org/10.1016/j.ijnonlinmec.2014.04.008. [CrossRef] [Google Scholar]
  8. J. Shao, T. Zeng, X. Wu: Study of a nonlinear membrane absorber applied to 3d acoustic cavity for low frequency broadband noise control. Materials (Basel) 12, 7 (2019) 1138. https://doi.org/10.3390/ma12071138. [CrossRef] [PubMed] [Google Scholar]
  9. J. Shao, Q. Luo, G. Deng, T. Zeng, J. Yang, X. Wu, C. Jin: Experimental study on influence of wall acoustic materials of 3d cavity for targeted energy transfer of a nonlinear membrane absorber, Applied Acoustics 184 (2021) 108342. https://doi.org/10.1016/j.apacoust.2021.108342. [CrossRef] [Google Scholar]
  10. L.J. Sivian: Acoustic impededance of small orifices. The Journal of the Acoustical Society of America 7 (1935) 94–101. https://doi.org/10.1121/1.1915795. [CrossRef] [Google Scholar]
  11. R.H. Bolt, S. Labate, U. Ingard: The acoustic reactance of small circular orifices. The Journal of the Acoustical Society of America 21, 2 (1949) 94–97. https://doi.org/10.1121/1.1906488. [CrossRef] [Google Scholar]
  12. V. Alamo Vargas, E. Gourdon, A. Ture Savadkoohi: Nonlinear softening, hardening behavior in helmholtz resonators for nonlinear regimes. Nonlinear Dynamics 91 (2018) 217–231. https://doi.org/10.1007/s11071-017-3864-8. [CrossRef] [Google Scholar]
  13. E. Gourdon, A. Ture Savadkoohi, V. Alamo Vargas: Targeted energy transfer from one acoustical mode to an helmholtz resonator with nonlinear behavior. Journal of Vibration and Acoustics 140, 6 (2018) 061005. https://doi.org/10.1115/1.4039960. [CrossRef] [Google Scholar]
  14. T.D. Burton, On the amplitude decay of strongly non-linear damped oscillators. Journal of Sound and Vibration 87, 4 (1983) 535–541. https://doi.org/10.1016/0022-460X(83)90504-7. [CrossRef] [Google Scholar]
  15. S. Wang, B. Tang: Estimating quadratic and cubic stiffness nonlinearity of a nonlinear vibration absorber with geometric imperfections. Measurement 185 (2021) 110005. https://doi.org/10.1016/j.measurement.2021.110005. [CrossRef] [Google Scholar]
  16. G. Kenderi, A. Fidlin: Nonparametric identification of nonlinear dynamic systems using a synchronisation-based method. Journal of Sound and Vibration 333, 24 (2014) 6405–6423. https://doi.org/10.1016/j.jsv.2014.07.021. [CrossRef] [Google Scholar]
  17. H.V.H. Ayala, L. dos Santos Coelho: Cascaded algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks. Mechanical Systems and Signal Processing 68–69 (2016) 378–393. https://doi.org/10.1016/j.ymssp.2015.05.022. [CrossRef] [Google Scholar]
  18. A. Lund, S.J. Dyke, W. Song, I. Bilionis: Identification of an experimental nonlinear energy sink device using the unscented kalman filter. Mechanical Systems and Signal Processing 136 (2020) 106512. https://doi.org/10.1016/j.ymssp.2019.106512. [CrossRef] [Google Scholar]
  19. A.H. Nayfeh: Perturbation Methods, Wiley, New York, 1973. [Google Scholar]
  20. A.H. Nayfeh, D.T. Mook: Nonlinear Oscillations, Wiley, New York, 1979. [Google Scholar]
  21. R.E. Mickens: Oscillations in Planar Dynamic Systems, World Scientific. https://doi.org/10.1142/2778. [Google Scholar]
  22. L.I. Manevitch: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dynamics 25 (2001) 95–109. https://doi.org/10.1023/A:1012994430793. [CrossRef] [Google Scholar]
  23. Wolfram Research, Inc.: Mathematica, Version 13, Champaign, IL, 2022. https://www.wolfram.com/mathematica. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.