Issue
Acta Acust.
Volume 7, 2023
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 11
Number of page(s) 18
DOI https://doi.org/10.1051/aacus/2023005
Published online 01 May 2023
  1. H. Kuttruff: Room acoustics. CRC Press, Boca Raton, Florida, 2017. [Google Scholar]
  2. P.M. Zurek, R.L. Freyman, U. Blalkrishnan: Auditory target detection in reverberation. Journal of the Acoustical Society of America 115 (2004) 1609–1620. [CrossRef] [PubMed] [Google Scholar]
  3. L.A. Jeffress, H.C. Blodgett, B.H. Deatherage: The masking of tone by white noise as a function of interaural time or phase displacement. Journal of the Acoustical Society of America 25 (1953) 190. [CrossRef] [Google Scholar]
  4. S. van de Par, A. Kohlrausch: A new approach to comparing binaural masking level differences at low and high frequencies. Journal of the Acoustical Society of America 101 (1997) 1671–1680. [CrossRef] [PubMed] [Google Scholar]
  5. S. van de Par, A. Kohlrausch: Dependence of binaural masking level differences on center frequency, masker bandwidth, and interaural parameters. Journal of the Acoustical Society of America 106 (1999) 1940–1947. [CrossRef] [PubMed] [Google Scholar]
  6. I.J. Hirsh: The influence of interaural phase on interaural summation and inhibition. Journal of the Acoustical Society of America 20 (1948) 536–544. [CrossRef] [Google Scholar]
  7. T. Biberger, S.D. Ewert: The effect of room acoustical parameters on speech reception thresholds and spatial release from masking. Journal of the Acoustical Society of America 146 (2019) 2188–2200. [CrossRef] [PubMed] [Google Scholar]
  8. B.A. Edmonds, J.F. Culling: The spatial unmasking of speech: evidence for better-ear listening. Journal of the Acoustical Society of America 120 (2006) 1539–1545. [CrossRef] [PubMed] [Google Scholar]
  9. D.E. Robinson, L.A. Jeffress: Effect of varying the interaural noise correlation on the detectability of tonal signals. Journal of the Acoustical Society of America 65 (1963) 1947–1952. [CrossRef] [Google Scholar]
  10. M. van der Heijden, C. Trahiotis: Binaural detection as a function of interaural correlation and bandwidth of masking noise: Implications for estimates of spectral resolution. Journal of the Acoustical Society of America 103 (1998) 1609–1614. [Google Scholar]
  11. L.R. Bernstein, C. Trahiotis, Accounting for binaural detection as a function of masker interaural correlation: effects of center frequency and bandwidth, Journal of the Acoustical Society of America 136 (2014) 3211–3220. [CrossRef] [PubMed] [Google Scholar]
  12. L.R. Bernstein, C. Trahiotis: An interaural-correlation-based approach that accounts for a wide variety of binaural detection data. Journal of the Acoustical Society of America 141 (2017) 1150–1160. [CrossRef] [PubMed] [Google Scholar]
  13. H.S. Colburn: Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise. Journal of the Acoustical Society of America 61 (1977) 525–533. [CrossRef] [PubMed] [Google Scholar]
  14. N.I. Durlach: Equalization and cancellation theory of binaural masking-level differences. Journal of the Acoustical Society of America 35 (1963) 1206–1218. [CrossRef] [Google Scholar]
  15. D.W. Grantham, F.L. Wightman: Detectability of a pulsed tone in the presence of a masker with time-varying interaural correlation. Journal of the Acoustical Society of America 65 (1979) 1509–1517. [CrossRef] [PubMed] [Google Scholar]
  16. I. Holube, M. Kinkel, B. Kollmeier: Binaural and monaural auditory filter bandwidths and time constants in probe tone detection experiments. Journal of the Acoustical Society of America 104 (1998) 2412–2425. [CrossRef] [PubMed] [Google Scholar]
  17. B. Kollmeier, R.H. Gilkey: Binaural forward and backward masking: evidence for sluggishness in binaural detection. Journal of the Acoustical Society of America 87 (1990) 1709–1719. [CrossRef] [PubMed] [Google Scholar]
  18. J. Breebaart, S. van de Par, A. Kohlrausch: The contribution of static and dynamic varying ITDs and IIDs to binaural detection. Journal of the Acoustical Society of America 106 (1999) 979–992. [CrossRef] [PubMed] [Google Scholar]
  19. J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. I. Model structure. Journal of the Acoustical Society of America 110 (2001) 1074–1088. [CrossRef] [PubMed] [Google Scholar]
  20. J. Braasch: Auditory localization and detection in multiple-sound-source scenarios. PhD thesis. Ruhr-Universität Bochum, Bochum, Germany, 2001. [Google Scholar]
  21. R. Beutelmann, T. Brand, B. Kollmeier: Revision, extension, and evaluation of a binaural speech intelligibility model. Journal of the Acoustical Society of America 127 (2010) 2479–2497. [CrossRef] [PubMed] [Google Scholar]
  22. M. Lavandier, J.F. Culling: Prediction of binaural speech intelligibility against noise in rooms. Journal of the Acoustical Society of America 127 (2010) 387–399. [CrossRef] [PubMed] [Google Scholar]
  23. J. Rennies, A. Warzybok, T. Brand, B. Kollmeier: Modelling the effects of a single reflection on binaural speech intelligibility. Journal of the Acoustical Society of America 135 (2014) 1556–1567. [CrossRef] [PubMed] [Google Scholar]
  24. T. Vicente, M. Lavandier: Further validation of a binaural model predicting speech intelligibility against envelope-modulated noises. Hearing Research 390 (2020) 107937. [CrossRef] [PubMed] [Google Scholar]
  25. R.Y. Litovsky, H.S. Colburn, W.A. Yost, S.J. Guzman: The precedence effect. Journal of the Acoustical Society of America 106 (1999) 1633–1654. [CrossRef] [PubMed] [Google Scholar]
  26. J.P.A. Lochner, J.F. Burger: The influence of reflections on auditorium acoustics. Journal of Sound and Vibration 1 (1964) 426–454. [CrossRef] [Google Scholar]
  27. J.S. Bradley: Predictors of speech intelligibility in rooms. Journal of the Acoustical Society of America 80 (1986) 837–845. [CrossRef] [PubMed] [Google Scholar]
  28. A. Warzybok, J. Rennies, T. Brand, S. Doclo, B. Kollmeier: Effects of spatial and temporal integration of a single early reflection on speech intelligibility. Journal of the Acoustical Society of America 133 (2013) 269–282. [CrossRef] [PubMed] [Google Scholar]
  29. J. Rennies, T. Brand, B. Kollmeier: Prediction of the influence of reverberation on binaural speech inteligibility in noise and in quiet. Journal of the Acoustical Society of America 130 (2011) 2999–3012. [CrossRef] [PubMed] [Google Scholar]
  30. T. Leclère, M. Lavandier, J.F. Culling: Speech intelligibility prediction in reverberation: Towards an integrated model of speech transmission, spatial unmasking, and binaural de-reverberation. Journal of the Acoustical Society of America 137 (2015) 3335–3345. [CrossRef] [PubMed] [Google Scholar]
  31. B.U. Seeber, S. Kerber, E.R. Hafter: A system to simulate and reproduce audio-visual environments for spatial hearing research. Hearing Research 260 (2010) 1–10. [CrossRef] [PubMed] [Google Scholar]
  32. B.U. Seeber, T. Wang: real-time Simulated Open Field Environment (rtSOFE) software package (1.1). Zenodo (2021). https://doi.org/10.5281/zenodo.5648305. [Google Scholar]
  33. J.B. Allen, D.A. Berkley: Image method for efficiently simulating small-room acoustics. Journal of the Acoustical Society of America 65 (1979) 943–950. [Google Scholar]
  34. F. Zotter, M. Frank: Ambisonics – a practical 3D audio theory for recording, studio production, sound reinforcement, and virtual reality. Germany, Springer, Heidelberg, 2019. [CrossRef] [Google Scholar]
  35. J. Daniel: Représentation de champs acoustiques, application à la transmission et à le reproduction de scènes sonores complexes dans un context multimèdia. Université de Paris, Paris, France, 2001. [Google Scholar]
  36. N. Kolotzek, B.U. Seeber: Spatial unmasking of circular moving sound sources in the free field, in: M. Ochmann, M. Vorländer, J. Fels (Eds.), Proc. 23rd International Congress on Acoustics integrating 4th EAA Euroregio, Deutsche Ges. für Akustik e.V. (DEGA), Germany, 2019:7640–7645. [Google Scholar]
  37. H. Fastl, E. Zwicker: Psychoacoustics: Facts and models. Springer, Heidelberg, Germany (2007). [CrossRef] [Google Scholar]
  38. H. Levitt: Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America 49 (1971) 467–477. [CrossRef] [Google Scholar]
  39. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.3: A toolbox for reproducible research in auditory modeling. Acta. Acustica 6 (2022) 19. [CrossRef] [EDP Sciences] [Google Scholar]
  40. N.F. Bischof, B.U. Seeber: Dynamic Binaural Unmasking model with fast cue extraction (DynBU_fast) to predict the better-ear and binaural benefit for detecting a dynamic sound source in noise (1.0). Zenodo (2023). https://doi.org/10.5281/zenodo.7643249. [Google Scholar]
  41. N.K. Srinivasan, M. Stansell, F.J. Gallun: The role of early and late reflections on spatial release from masking: Effects of age and hearing loss. Journal of the Acoustical Society of America 141 (2017) EL185–EL191. [CrossRef] [PubMed] [Google Scholar]
  42. J. Rennies, A. Warzybok, T. Brand, B. Kollmeier: Spatial-temporal integration of speech reflections, in: S. Spors, F.-H. Wurm (Eds.), Fortschritte der Akustik - DAGA '19.Rostock, Germany: Deutsche Ges. für Akustik e.V. (DEGA), 2019:840–843. [Google Scholar]
  43. W. Schubotz, T. Brand, B. Kollmeier, S.D. Ewert: Monaural speech intelligibility and detection in maskers with varying amount of spectro-temporal speech features. Journal of the Acoustical Society of America 140 (2016) 524–540. [CrossRef] [PubMed] [Google Scholar]
  44. L.R. Bernstein, C. Trahiotis, M.A. Akeroyd, K. Hartung: Sensitivity to brief changes of interaural time and interaural intensity. Journal of the Acoustical Society of America 109 (2001) 1604–1615. [CrossRef] [PubMed] [Google Scholar]
  45. N.F. Viemeister, G.H. Wakefield: Temporal integration and multiple looks. Journal of the Acoustical Society of America 90 (1991) 858–865. [CrossRef] [PubMed] [Google Scholar]
  46. C.F. Hauth, T. Brand: Modeling sluggishness in binaural unmasking of speech for maskers with time-varying interaural phase differences. Trends in Hearing 22 (2018) 1–10. [Google Scholar]
  47. R. Wan, N.I. Durlach, H.S. Colburn: Application of a short-time version of the Equalization-Cancellation model to speech intelligibility experiments with speech masker. Journal of the Acoustical Society of America 136 (2014) 768–776. [CrossRef] [PubMed] [Google Scholar]
  48. I. Siveke, S.D. Ewert, B. Grothe, L. Wiegrebe: Psychophysical and physiological evidence for fast binaural processing. Journal of Neuroscience 28 (2008) 2043–2052. [CrossRef] [PubMed] [Google Scholar]
  49. S. Anstis, S. Saida: Adaptation to auditory streaming of frequency-modulated tones. Journal of Experimental Psychology: Human Perception and Performance 11 (1985) 257–271. [CrossRef] [Google Scholar]
  50. A.S. Bregman: Auditory streaming is cumulative. Journal of Experimental Psychology: Human Perception and Performance 4 (1978) 380–387. [CrossRef] [PubMed] [Google Scholar]
  51. S. Deike, P. Heil, M. Böckmann-Barthel, A. Brechmann: The build-up of auditory stream segregation: a different perspective. Frontiers in Psychology 3 (2012) 1–7. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.