Issue |
Acta Acust.
Volume 7, 2023
Topical Issue - Auditory models: from binaural processing to multimodal cognition
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/aacus/2023006 | |
Published online | 01 May 2023 |
- K. van der Heijden, J.P. Rauschecker, B. de Gelder, E. Formisano: Cortical mechanisms of spatial hearing. Nature Reviews Neuroscience 20, 10 (2019) 609–623. [CrossRef] [PubMed] [Google Scholar]
- P. Majdak, R. Baumgartner, B. Laback: Acoustic and non-acoustic factors in modeling listener-specific performance of sagittal-plane sound localization. Frontiers in Psychology 5 (2014). https://doi.org/10.3389/fpsyg.2014.00319 [CrossRef] [Google Scholar]
- B. Grothe, M. Pecka, D. McAlpine: Mechanisms of sound localization in mammals. Physiological Reviews 90, 3 (2010) 983–1012. [PubMed] [Google Scholar]
- M. Pecka, C. Leibold, B. Grothe: Biological aspects of perceptual space formation. The Technology of Binaural Understanding. Springer (2020) 151–171. [CrossRef] [Google Scholar]
- W.J. Ma: Organizing probabilistic models of perception. Trends in Cognitive Sciences 16, 10 (2012) 511–518. [CrossRef] [PubMed] [Google Scholar]
- J. Reijniers, D. Vanderelst, C. Jin, S. Carlile, H. Peremans: An ideal-observer model of human sound localization. Biological Cybernetics 108, 2 (2014) 169–181. [CrossRef] [PubMed] [Google Scholar]
- H. Kayser, V. Hohmann, S.D. Ewert, B. Kollmeier, J. Anemüller: Robust auditory localization using probabilistic inference and coherence-based weighting of interaural cues. The Journal of the Acoustical Society of America 138, 5 (2015) 2635–2648. [CrossRef] [PubMed] [Google Scholar]
- R. Ege, A.J. van Opstal, M.M. van Wanrooij: Accuracy-precision trade-off in human sound localisation. Scientific Reports 8, 1 (2018) 16399. [CrossRef] [PubMed] [Google Scholar]
- G. McLachlan, P. Majdak, J. Reijniers, H. Peremans: Towards modelling active sound localisation based on bayesian inference in a static environment. Acta Acustica 5 (2021) 45. [CrossRef] [EDP Sciences] [Google Scholar]
- H. Møller, M.F. Sørensen, D. Hammershøi, C.B. Jensen: Head-related transfer functions of human subjects. Journal of the Audio Engineering Society 43, 5 (1995) 300–321. [Google Scholar]
- J.C. Middlebrooks: Narrow-band sound localization related to external ear acoustics. The Journal of the Acoustical Society of America 92, 5 (1992) 2607–2624. [CrossRef] [PubMed] [Google Scholar]
- P. Zakarauskas, M.S. Cynader: A computational theory of spectral cue localization. The Journal of the Acoustical Society of America 94, 3 (1993) 1323–1331. [CrossRef] [Google Scholar]
- P.M. Hofman, A.J. van Opstal: Spectro-temporal factors in two-dimensional human sound localization. The Journal of the Acoustical Society of America 103, 5 (1998) 2634–2648. [CrossRef] [PubMed] [Google Scholar]
- E.H.A. Langendijk, A.W. Bronkhorst: Contribution of spectral cues to human sound localization. The Journal of the Acoustical Society of America 112, 4 (2002) 1583–1596. [CrossRef] [PubMed] [Google Scholar]
- R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. The Journal of the Acoustical Society of America 136, 2 (2014) 791–802. [CrossRef] [PubMed] [Google Scholar]
- R. Baumgartner, P. Majdak, B. Laback: Modeling the effects of sensorineural hearing loss on sound localization in the median plane. Trends in Hearing 20 (2016) 2331216516662003. [CrossRef] [Google Scholar]
- A.J. Van Opstal, J. Vliegen, T. van Esch: Reconstructing spectral cues for sound localization from responses to rippled noise stimuli. PLoS One 12, 3 (2017) 1–29. [Google Scholar]
- J.C. Middlebrooks: Sound localization. Handbook of Clinical Neurology, Vol. 129, Elsevier (2015) 99–116. [CrossRef] [PubMed] [Google Scholar]
- M.M. van Wanrooij, A. John van Opstal: Relearning sound localization with a new ear. Journal of Neuroscience 25, 22 (2005) 5413–5424. [CrossRef] [PubMed] [Google Scholar]
- M. Morimoto, H. Aokata: Localization cues of sound sources in the upper hemisphere. Journal of the Acoustical Society of Japan (E) 5, 3 (1984) 165–173. [CrossRef] [Google Scholar]
- K. Pollack, W. Kreuzer, P. Majdak: Perspective chapter: Modern acquisition of personalised head-related transfer functions – an overview, in: B.F.G. Katz, Piotr Majdak (Eds.), Advances in fundamental and applied research on spatial audio, Rijeka: IntechOpen, 2022. [Google Scholar]
- J.C. Middlebrooks: Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. The Journal of the Acoustical Society of America 106, 3 (1999) 1493–1510. [CrossRef] [PubMed] [Google Scholar]
- P. Majdak, M.J. Goupell, B. Laback: 3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training. Attention, Perception, & Psychophysics 72, 2 (2010) 454–469. [CrossRef] [PubMed] [Google Scholar]
- D.P. Kumpik, O. Kacelnik, A.J. King: Adaptive reweighting of auditory localization cues in response to chronic unilateral earplugging in humans. Journal of Neuroscience 30, 14 (2010) 4883–4894. [CrossRef] [PubMed] [Google Scholar]
- F.L. Wightman, D.J. Kistler: Monaural sound localization revisited. The Journal of the Acoustical Society of America 101, 2 (1997) 1050–1063. [CrossRef] [PubMed] [Google Scholar]
- J.O. Stevenson-Hoare, T.C.A. Freeman, J.F. Culling: The pinna enhances angular discrimination in the frontal hemifield. The Journal of the Acoustical Society of America 152, 4 (2022) 2140–2149. [CrossRef] [PubMed] [Google Scholar]
- R. Barumerli, P. Majdak, R. Baumgartner, M. Geronazzo, F. Avanzini: Evaluation of a human sound localization model based on Bayesian inference, in Forum Acusticum, Lyon, France, December (2020) 1919–1923. [Google Scholar]
- W.J. Ma: Bayesian decision models: A Primer. Neuron 104, 1 (2019) 164–175. [CrossRef] [PubMed] [Google Scholar]
- R. Ege, A.J. van Opstal, M.M. van Wanrooij: Perceived target range shapes human sound-localization behavior. eneuro 6(2) (2019) ENEURO.0111–18.2019. [Google Scholar]
- K. Krishnamurthy, M.R. Nassar, S. Sarode, J.I. Gold: Arousal-related adjustments of perceptual biases optimize perception in dynamic environments. Nature Human Behaviour 1, 6 (2017) 1–11. [CrossRef] [Google Scholar]
- A. Andreopoulou, B.F. Katz: Identification of perceptually relevant methods of inter-aural time difference estimation. The Journal of the Acoustical Society of America 142, 2 (2017) 588–598. [CrossRef] [PubMed] [Google Scholar]
- M. Dietz, S.D. Ewert, V. Hohmann: Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication 53, 5 (2011) 592–605. [CrossRef] [Google Scholar]
- E.A. Macpherson, J.C. Middlebrooks: Vertical-plane sound localization probed with ripple-spectrum noise. The Journal of the Acoustical Society of America 114, 1 (2003) 430–445. [CrossRef] [PubMed] [Google Scholar]
- D.J. Kistler, F.L. Wightman: A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. The Journal of the Acoustical Society of America 91, 3 (1992) 1637–1647. [CrossRef] [PubMed] [Google Scholar]
- J.E. Mossop, J.F. Culling: Lateralization of large interaural delays. The Journal of the Acoustical Society of America 104, 3 (1998) 1574–1579. [CrossRef] [PubMed] [Google Scholar]
- B.R. Glasberg, B.C.J. Moore: Derivation of auditory filter shapes from notched-noise data. Hearing Research 47, 1 (1990) 103–138. [CrossRef] [PubMed] [Google Scholar]
- A. Saremi, R. Beutelmann, M. Dietz, G. Ashida, J. Kretzberg, S. Verhulst: A comparative study of seven human cochlear filter models. The Journal of the Acoustical Society of America 140, 3 (2016) 1618–1634. [CrossRef] [PubMed] [Google Scholar]
- V.R. Algazi, C. Avendano, R.O. Duda: Elevation localization and head-related transfer function analysis at low frequencies. The Journal of the Acoustical Society of America 109, 3 (2001) 1110–1122. [CrossRef] [PubMed] [Google Scholar]
- J. Hebrank, D. Wright: Spectral cues used in the localization of sound sources on the median plane. The Journal of the Acoustical Society of America 56, 6 (1974) 1829–1834. [CrossRef] [PubMed] [Google Scholar]
- N. Roman, D. Wang, G.J. Brown: Speech segregation based on sound localization. The Journal of the Acoustical Society of America 114, 4 (2003) 18. [Google Scholar]
- D.N. Zotkin, R. Duraiswami, N.A. Gumerov: Regularized HRTF fitting using spherical harmonics, in: 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, IEEE, New Paltz, NY, USA, October (2009) 257–260. [Google Scholar]
- S. Carlile, P. Leong, S. Hyams: The nature and distribution of errors in sound localization by human listeners. Hearing Research 114, 1 (1997) 179–196. [CrossRef] [PubMed] [Google Scholar]
- P. Majdak, M.J. Goupell, B. Laback: Two-dimensional sound localization in cochlear implantees. Ear and Hearing 32, 2 (2011) 198–208. [CrossRef] [PubMed] [Google Scholar]
- G.A. Studebaker: A rationalized arcsine transform. Journal of Speech, Language, and Hearing Research 28, 3 (1985) 455–462. [CrossRef] [Google Scholar]
- W.A. Yost, R.H. Dye: Discrimination of interaural differences of level as a function of frequency. The Journal of the Acoustical Society of America 83, 5 (1988) 1846–1851. [CrossRef] [PubMed] [Google Scholar]
- R. Barumerli, M. Geronazzo, F. Avanzini, Localization in elevation with non-individual head-related transfer functions: comparing predictions of two auditory models, in 2018 26th European Signal Processing Conference (EUSIPCO) (2018) 2539–2543. https://doi.org/10.23919/EUSIPCO.2018.8553320. ISSN: 2076-1465. [CrossRef] [Google Scholar]
- D. Marelli, R. Baumgartner, P. Majdak: Efficient approximation of head-related transfer functions in subbands for accurate sound localization. IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, 7 (2015) 1130–1143. https://doi.org/10.1109/TASLP.2015.2425219. [Google Scholar]
- R. Barumerli, P. Majdak, J. Reijniers, R. Baumgartner, M. Geronazzo, F. Avanzini: Predicting directional sound-localization of human listeners in both horizontal and vertical dimensions. Audio Engineering Society Convention 148 (2020). [Google Scholar]
- V. Best, S. Carlile, C. Jin, A. van Schaik, The role of high frequencies in speech localization, The Journal of the Acoustical Society of America 118, 1 (2005) 353–363. https://doi.org/10.1121/1.1926107. [CrossRef] [PubMed] [Google Scholar]
- J. Blauert: Spatial hearing. The Psychophysics of Human Sound Localization. The MIT Press, Cambridge, MA, revised edition (1997). [Google Scholar]
- R. Ege, A.J. van Opstal, P. Bremen, M.M. van Wanrooij: Testing the precedence effect in the median plane reveals backward spatial masking of sound. Scientific Reports 8, 1 (2018) 8670. [CrossRef] [PubMed] [Google Scholar]
- M. Geronazzo, S. Spagnol, F. Avanzini: Do we need individual head-related transfer functions for vertical localization? The case study of a spectral notch distance metric. IEEE/ACM Transactions on Audio, Speech, and Language Processing 26, 7 (2018) 1243–1256. [Google Scholar]
- W. Gaissmaier, L.J. Schooler: The smart potential behind probability matching. Cognition 109, 3 (2008) 416–422. [CrossRef] [PubMed] [Google Scholar]
- G. Andeol, E.A. Macpherson, A.T. Sabin: Sound localization in noise and sensitivity to spectral shape. Hearing Research 304 (2013) 20–27. [CrossRef] [PubMed] [Google Scholar]
- C.V. Parise, K. Knorre, M.O. Ernst: Natural auditory scene statistics shapes human spatial hearing. Proceedings of the National Academy of Sciences 111, 16 (2014) 6104–6108. [CrossRef] [PubMed] [Google Scholar]
- B.J. Fischer, J.L. Peña: Owl’s behavior and neural representation predicted by Bayesian inference. Nature Neuroscience 14, 8 (2011) 1061–1066. [CrossRef] [PubMed] [Google Scholar]
- B. Skerritt-Davis, M. Elhilali: Detecting change in stochastic sound sequences. PLOS Computational Biology 14, 5 (2018) 1–24. [Google Scholar]
- B. Odegaard, U.R. Beierholm, J. Carpenter, L. Shams: Prior expectation of objects in space is dependent on the direction of gaze. Cognition 182 (2019) 220–226. [CrossRef] [PubMed] [Google Scholar]
- E.M. Kaya, M. Elhilali: Modelling auditory attention. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 1714 (2017) 20160101. [CrossRef] [PubMed] [Google Scholar]
- M. Dietz, T. Marquardt, N.H. Salminen, D. McAlpine: Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds. Proceedings of the National Academy of Sciences 110, 37 (2013) 15151–15156. [CrossRef] [PubMed] [Google Scholar]
- D.A. Hambrook, M. Ilievski, M. Mosadeghzad, M. Tata: A Bayesian computational basis for auditory selective attention using head rotation and the interaural time-difference cue. PLOS One 12, 10 (2017) e0186104. [Google Scholar]
- D.B. Ward, E.A. Lehmann, R.C. Williamson: Particle filtering algorithms for tracking an acoustic source in a reverberant environment. IEEE Transactions on Speech and Audio Processing 11, 6 (2003) 826–836. [CrossRef] [Google Scholar]
- P. Majdak, C. Hollomey, R. Baumgartner: Amt 1.x: A toolbox for reproducible research in auditory modeling. Acta Acustica 6 (2022) 19. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.