Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 10
Number of page(s) 15
Section Audio Signal Processing and Transducers
DOI https://doi.org/10.1051/aacus/2023004
Published online 26 April 2023
  1. J. Choi, J. Kim, N.S. Kim: Robust time delay estimation for acoustic indoor localization in reverberant environments. IEEE Signal Processing Letters 24, 2 (2017) 226–230. [CrossRef] [Google Scholar]
  2. M. Jia, J. Sun, C. Bao: Real-time multiple sound source localization and counting using a soundfield microphone. Journal of Ambient Intelligence & Humanized Computing 8, 6 (2017) 829–844. [CrossRef] [Google Scholar]
  3. B. Laufer-Goldshtein, R. Talmon, S. Gannot: A hybrid approach for speaker tracking based on TDOA and data-driven models. IEEE Transactions on Audio, Speech, & Language Processing 26, 4 (2018) 725–735. [CrossRef] [Google Scholar]
  4. S. Argentieri, P. Danes, P. Souères: A survey on sound source localization in robotics: From binaural to array processing methods. Computer Speech & Language 34, 1 (2015) 87–112. [CrossRef] [Google Scholar]
  5. Q. Zhang, Z. Chen, F. Yin: Speaker tracking based on distributed particle filter in distributed microphone networks. IEEE Transactions on Systems Man & Cybernetics Systems 47, 9 (2017) 2433–2443. [Google Scholar]
  6. G. Jiang, Y. Liu, Q. Kong, W. Hao, L. An: Study on acoustic time delay localization in boiler tube arrays considering effective sound velocity. Applied Acoustics 171 (2021) 107680. [CrossRef] [Google Scholar]
  7. E.A. King, A. Tatoglu, D. Iglesias, A. Matriss: Audio-visual based non-line-of-sight sound source localization: A feasibility study. Applied Acoustics 171 (2021) 107674. [CrossRef] [Google Scholar]
  8. K. Weisberg, B. Laufer-Goldshtein, S. Gannot: Simultaneous tracking and separation of multiple sources using factor graph model. IEEE/ACM Transactions on Audio, Speech, & Language Processing 28 (2020) 2848–2864. [CrossRef] [Google Scholar]
  9. C.H. Knapp, G.C. Carter: The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, & Signal Processing 24, 4 (1976) 320–327. [CrossRef] [Google Scholar]
  10. L. Wang, T.K. Hon, J. Reiss, A. Cavallaro: An iterative approach to source counting and localization using two distant microphones. IEEE/ACM Transactions on Audio, Speech, & Language Processing 24, 6 (2016) 1079–1093. [CrossRef] [Google Scholar]
  11. S. Makino, T.W. Lee, H. Sawada: Blind speech separation. Springer, Netherlands (2007). [CrossRef] [Google Scholar]
  12. S. Rickard, O. Yilmaz: On the approximate W-disjoint orthogonality of speech. IEEE International Conference on Acoustics, Speech, and Signal Procesing. Orlando, USA (2002) 529–532. [Google Scholar]
  13. X. Zhong, J.R. Hopgood: A time-frequency masking based random finite set particle filtering method for multiple acoustic source detection and tracking. IEEE Transactions on Audio, Speech, & Language Processing 23, 12 (2015) 2356–2370. [CrossRef] [Google Scholar]
  14. A. Griffin, A. Alexandridis, D. Pavlidi: Localizing multiple audio sources in a wireless acoustic sensor network. Signal Processing 107 (2015) 54–67. [CrossRef] [Google Scholar]
  15. W. Kai, R.V. Gopalan, A.W.H. Khong: Multi-source DOA estimation in a reverberant environment using a single acoustic vector sensor. IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 10 (2018) 1848–1859. [Google Scholar]
  16. W.H. Foy: Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace & Electronic Systems. AES-12 2 (1976) 189–194. [Google Scholar]
  17. H. Schau, A. Robinson: Passive source location employing spherical surfaces from time-of-arrival differences. IEEE Transactions on Acoustics, Speech, & Signal Processing 35, 8 (1987) 1223–1225. [CrossRef] [Google Scholar]
  18. J.O. Smith, J.S. Abel: Close-form least-squares source location estimation from range-difference measurements. IEEE Transactions on Audio, Speech, & Language Processing 35, 12 (1987) 1661–1669. [Google Scholar]
  19. Y.T. Chan, K.C. Ho: A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing 42, 8 (2002) 1905–1915. [Google Scholar]
  20. Y. Huang, J. Benesty, , GW Elko: Passive acoustic source localization for video camera steering. In: IEEE International Conference on Acoustics, Speech, & Signal Processing (2002) 909–912. [Google Scholar]
  21. Y. Huang, J. Benesty, GW Elko: An efficient linear-correction least-squares approach to source localization. In: IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (2001) 67–70. [Google Scholar]
  22. Y. Huang, J. Benesty, G.W. Elko: Real-time passive source localization: a practical linear-correction least-squares approach. IEEE Transactions on Speech Audio Process 9, 8 (2001) 943–956. [CrossRef] [Google Scholar]
  23. K. Yang, J. An, X. Bu: Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Transactions on Vehicular Technology 59, 3 (2010) 1558–1562. [CrossRef] [Google Scholar]
  24. Y. Weng, W. Xiao, L. Xie: Total least squares method for robust source localization in sensor networks using TDOA measurements. International Journal of Distributed Sensor Networks 7, 1 (2011) 1063–1067. [Google Scholar]
  25. D.B. Ward, E.A. Lehmann, R.C. Williamson: Particle filtering algorithms for tracking an acoustic source in a reverberant environment. IEEE Transactions on Speech & Audio Processing 11, 6 (2003) 826–836. [CrossRef] [Google Scholar]
  26. M. Crocco, S. Martelli, A. Trucco, A. Zunino, V. Murino: Audio tracking in noisy environments by acoustic map and spectral signature. IEEE Transactions on Cybernetics 48, 5 (2018) 1619–1632. [CrossRef] [PubMed] [Google Scholar]
  27. W.-K. Ma, B.-N. Vo, S.S. Singh, A. Baddeley:, Tracking an unknown time-varying number of speakers using TDOA measurements: a random finite set approach. IEEE Transactions on Signal Processing 54, 9 (2006) 3291–3304. [CrossRef] [Google Scholar]
  28. L. Sun, Q. Cheng, Indoor multiple sound source localization using a novel data selection scheme. In: 48th Conference Information Sciences and Systems (2014) 1–6. [Google Scholar]
  29. A. Alexandridis, A. Mouchtaris: Multiple sound source location estimation in wireless acoustic sensor networks using DOA estimates: The data-association problem. IEEE Transactions on Acoustics, Speech, & Signal Processing 26, 2 (2018) 342–356. [Google Scholar]
  30. Y. Guo, H.Y. Zhu, X.D. Dang: Tracking multiple acoustic sources by adaptive fusion of TDOAs across microphone pairs. Digital Signal Processing 106 (2020), 102853. [CrossRef] [Google Scholar]
  31. M.F. Fallon, S. Godsill: Acoustic source localization and tracking using track before detect. IEEE Transactions on Audio, Speech, & Language Processing 18, 6 (2010) 1228–1242. [CrossRef] [Google Scholar]
  32. A. Masnadi-Shirazi, B.D. Rao: An ICA-SCT-PHD filter approach for tracking and separation of unknown time-varying number of sources. IEEE Transactions on Audio, Speech, & Language Processing 21, 4 (2013) 828–841. [CrossRef] [Google Scholar]
  33. M. Taseska, E.A.P. Habets: Blind source separation of moving sources using sparsity-based source detection and tracking. IEEE Transactions on Audio, Speech, & Language Processing 18, 6 (2018) 657–670. [CrossRef] [Google Scholar]
  34. X.H. Zhong: A Bayesian framework for multiple acoustic source tracking. PhD Thesis, University of Edinburgh, 2010. [Google Scholar]
  35. T. May, S. van de Par, A. Kohlrausch: A binaural scene analyzer for joint localization and recognition of speakers in the presence of interfering noise sources and reverberation. IEEE Transactions on Audio, Speech, & Language Processing 20, 7 (2012) 2016–2030. [CrossRef] [Google Scholar]
  36. K. Youssef, K. Itoyama, K. Yoshii: Simultaneous identification and localization of still and mobile speakers based on binaural robot audition. Journal of Robotics & Mechatronics 29, 1 (2017) 59–71. [CrossRef] [Google Scholar]
  37. F. Vesperini, P. Vecchiotti, E. Principi, S. Squartini, F. Piazza: Localizing speakers in multiple rooms by using deep neural networks. Computer Speech & Language 49 (2018) 83–106. [CrossRef] [Google Scholar]
  38. A.V. Oppenheim, R.W. Schafer: Discrete-Time Signal Processing. Pearson International (2013). [Google Scholar]
  39. L. Sun, Q. Cheng: Indoor multiple sound source localization using a novel data selection scheme. In: 48th Conf Information Sciences and Systems (2014) 1–6. [Google Scholar]
  40. O. Yilmaz, S. Richard: Blind Separation of Speech Mixtures via Time-Frequency Masking. IEEE Transactions on Signal Processing 52, 7 (2004) 1830–1847. [CrossRef] [Google Scholar]
  41. K. Wu, V.G. Reju, A.W.H. Khong: Multi-source DOA estimation in a reverberant environment using a single Acoustic vector sensor. IEEE Transactions on Audio, Speech, & Language Processing 26, 10 (2018) 1848–1859. [CrossRef] [Google Scholar]
  42. D.A. Reynolds, T.F. Quatieri, R.B. Dunn: Speaker verification using adapted Gaussian mixture models. Digital Signal Processing 10 (2000) 19–41. [CrossRef] [Google Scholar]
  43. J.B. Allen, D.A. Berkley: Image method for efficiently simulating small-room acoustics. Journal of the Acoustical Society of America 65, 4 (1979) 943–950. [Google Scholar]
  44. S.O. Sadjadi, M. Slaney, L. Heck: MSR identity toolbox v1.0: A MATLAB toolbox for speaker recognition research. Microsoft Research Technical Report, 2013. [Google Scholar]
  45. Online. Available: http://www.scientificamerican.com/podcast. [Google Scholar]
  46. Y. Guo: voice data for speaker recognition. figshare. Media (2022) https://doi.org/10.6084/m9.figshare.21388251.v3. [Google Scholar]
  47. D. Schuhmacher, B.T. Vo, B.N. Vo: A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing 56, 8 (2008) 3447–3457. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.