Open Access
Acta Acust.
Volume 7, 2023
Article Number 13
Number of page(s) 11
Section Computational and Numerical Acoustics
Published online 28 April 2023
  1. A. Sengissen, B. Caruelle, P. Souchotte, E. Jondeau, T. Poinsot: LES of noise induced by flow through a double diaphragm system. In: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), Miami, Florida, 11–13 May 2009. [Google Scholar]
  2. T. Elnady, M. Åbom: SIDLAB: New 1D sound propagation simulation software for complex duct networks. In: 13th International Congress on Sound and Vibration 2006 (ICSV 2006), Vol. 5, 2006, 4262–4269. [Google Scholar]
  3. H. Kuehnelt, A. Haumer, T. Bäuml, U. Reisenbichler, C. Reichl, G. Karlowatz: Flow-acoustic concept modelling of HVAC duct networks using a dymola/modelica frame work. In: The 16th International Congress on Sound and Vibration (ICSV16), Kraków, 5–9 July, 2009. [Google Scholar]
  4. M.W. Nashed, T. Elnady, M. Åbom: Modeling of duct acoustics in the high frequency range using two-ports. Applied Acoustics 135 (2018) 37–47. [CrossRef] [Google Scholar]
  5. R. Glav, M. Åbom: A general formalism for analyzing acoustic 2-port networks. Journal of Sound and Vibration 202, 5 (1997) 739–747. [CrossRef] [Google Scholar]
  6. VDI 2081 Part 1: Noise generation and noise reduction in air-conditioning systems. Standard, Germany, 2001. [Google Scholar]
  7. D.D. Reynolds, J.M. Bledsoe: Algorithms for hvac acoustic. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Atlanta, GA, 1990. [Google Scholar]
  8. A. Cummings: High frequency ray acoustics models for duct silencers. Journal of Sound and Vibration 221, 4 (1999) 681–708. [CrossRef] [Google Scholar]
  9. M.W. Nashed, T. Elnady, M. Åbom: The effect of reflections in power-based models for sound in ducts. Proceedings of Meetings on Acoustics 30, 1 (2017) 022005. [CrossRef] [Google Scholar]
  10. R. Kirby: Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow. The Journal of the Acoustical Society of America 114, 1 (2003) 200–209. [CrossRef] [PubMed] [Google Scholar]
  11. B. Nennig, E. Perrey-Debain, M. Ben Tahar: A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow. The Journal of the Acoustical Society of America 128, 6 (2010) 3308–3320. [CrossRef] [PubMed] [Google Scholar]
  12. S. Marburg, B. Nolte: Computational acoustics of noise propagation in fluids – finite and boundary element methods. Springer, Berlin, 2008. [CrossRef] [Google Scholar]
  13. R.J. Astley: Fe mode-matching schemes for the exterior Helmholtz problem and their relationship to the FE-DtN approach. Communications in Numerical Methods in Engineering 12 (1996) 257–267. [CrossRef] [Google Scholar]
  14. R. Kirby: Modeling sound propagation in acoustic waveguides using a hybrid numerical method. The Journal of the Acoustical Society of America 124, 4 (2008) 1930–1940. [CrossRef] [PubMed] [Google Scholar]
  15. A. Snakowska, J. Jurkiewicz: A new approach to the theory of acoustic multi-port networks with multimode wave and its application to muffler analysis, Journal of Sound and Vibration 490 (2021) 115722. [CrossRef] [Google Scholar]
  16. D. Herrin, S. Ramalingam, Z. Cui, J. Liu: Predicting insertion loss of large duct systems above the plane wave cutoff frequency. Applied Acoustics 73, 1 (2012) 37–42. [CrossRef] [Google Scholar]
  17. P. Martin: Acoustic scattering by inhomogeneous obstacles. SIAM Journal on Applied Mathematics 64 (2003) 297–308. [CrossRef] [Google Scholar]
  18. R. Binois: Étude de l”efficacité des silencieux à baffles parallèles et conception de solutions optimisées en basses fréquences. PhD thesis. Université Pierre et Marie Curie, 2014. [Google Scholar]
  19. R. Binois, E. Perrey-Debain, N. Dauchez, B. Nennig, J.-M. Ville, G. Beillard: On the efficiency of parallel baffle-type silencers in rectangular ducts: prediction and measurement. Acta Acustica United with Acoustica 101 (2015) 520–530. [CrossRef] [Google Scholar]
  20. P. Joseph, C. Morfey, C. Lowis: Multi-mode sound transmission in ducts with flow. Journal of Sound and Vibration 264, 3 (2003) 523–544. [CrossRef] [Google Scholar]
  21. R. Redheffer: Difference equations and functional equations in transmission-line theory. Modern Mathematics for the Engineer 12 (1961) 282–337. [Google Scholar]
  22. L.N. Quaroni, I. Ramadan, S. Rampnoux, S. Malavasi, E. Perrey-Debain: Multi-modal noise generation in low Mach number orifice plates: an experimental investigation. In: Proceedings of the 25th Conference of the Italian Association of Theoretical and Applied Mechanics, AIMETA 2022, Palermo, Italy, 4–8 September 2022. [Google Scholar]
  23. L.N. Quaroni, S. Rampnoux, I. Ramadan, S. Malavasi, E. Perrey-Debain: Experimental investigation of multimodal noise generation by ducted low mach number flows through orifice plates. The Journal of the Acoustical Society of America 152, 5 (2022) 2982–2999. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.