Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 34
Number of page(s) 6
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2023028
Published online 07 July 2023
  1. H. Møller, M.F. Sørensen, D. Hammershøi, C.B. Jensen: Head-related transfer functions of human subjects. Journal of the Audio Engineering Society 43, 5 (1995) 300–321. [Google Scholar]
  2. V. Pulkki, M.-V. Laitinen, V. Sivonen: HRTF measurements with a continuously moving loud speaker and swept sines, in 128th Audio Engineering Society Convention, London, UK, May 22–25, 2010. [Google Scholar]
  3. J.-G. Richter, G. Behler, J. Fels: Evaluation of a fast HRTF measurement system, in 140th Audio Engineering Society Convention, Paris, France, June 4–7, 2016. [Google Scholar]
  4. J. He, R. Ranjan, W.-S. Gan: Fast continuous HRTF acquisition with unconstrained movements of human subjects, in Sound 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 321–325. [Google Scholar]
  5. J. Reijniers, B. Partoens, J. Steckel, H. Peremans: HRTF measurement by means of unsupervised head movements with respect to a single fixed speaker. IEEE Access 8 (2020) 92287–92300. [Google Scholar]
  6. B.F. Katz: Boundary element method calculation of individual head-related transfer function. I. Rigid model calculation. Journal of the Acoustical Society of America 110, 5 (2001) 2440–2448. [CrossRef] [PubMed] [Google Scholar]
  7. M. Otani, S. Ise: Fast calculation system specialized for head-related transfer function based on boundary element method. Journal of the Acoustical Society of America 119, 5 (2006) 2589–2598. [CrossRef] [PubMed] [Google Scholar]
  8. H. Ziegelwanger, P. Majdak, W. Kreuzer: Nu merical calculation of listener-specific head-related transfer functions and sound localization: Microphone model and mesh discretization. Journal of the Acoustical Society of America 138, 1 (2015) 208–222. [CrossRef] [PubMed] [Google Scholar]
  9. T. Xiao, Q. Huo Liu: Finite difference computation of head-related transfer function for human hearing. Journal of the Acoustical Society of America 113, 5 (2003) 2434–2441. [CrossRef] [PubMed] [Google Scholar]
  10. H. Takemoto, P. Mokhtari, H. Kato, R. Nishimura, K. Iida: Mechanism for generating peaks and notches of head-related transfer functions in the median plane. Journal of the Acoustical Society of America 132, 6 (2012) 3832–3841. [CrossRef] [PubMed] [Google Scholar]
  11. D.J. Kistler, F.L. Wightman: A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction, Journal of the Acoustical Society of America 91, 3 (1992) 1637–1647. [CrossRef] [PubMed] [Google Scholar]
  12. B.-S. Xie: Recovery of individual head-related transfer functions from a small set of measurements. Journal of the Acoustical Society of America 132, 1 (2012) 282–294. [CrossRef] [PubMed] [Google Scholar]
  13. J.C. Middlebrooks: Individual differences in external-ear transfer functions reduced by scaling in frequency. Journal of the Acoustical Society of America 106, 3 (1999) 1480–1492. [CrossRef] [PubMed] [Google Scholar]
  14. R. Algazi, C. Avendano, R.O. Duda: Estimation of a spherical-head model from anthropometry. Journal of the Audio Engineering Society 49, 6 (2001) 472–479. [Google Scholar]
  15. R. Nicol, V. Lemaire, A. Bondu, S. Busson; Looking for a relevant similarity criterion for HRTF clustering: A comparative study, in 120th Audio Engineering Society Convention, Paris, France, May 20–23, 2006. [Google Scholar]
  16. S. Shimada, N. Hayashi, S. Hayashi: A clustering method for sound localization transfer functions. Journal of the Audio Engineering Society 42, 7/8 (1994) 577–584. [Google Scholar]
  17. K.-S. Lee, S.-P. Lee: A relevant distance criterion for interpolation of head-related transfer functions. IEEE Transactions on Audio, Speech, and Language Processing 19 (2011) 1780–1790. [CrossRef] [Google Scholar]
  18. S. Davis, P. Mermelstein: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing 28, 4 (1980) 357–366. [CrossRef] [Google Scholar]
  19. J. Huopaniemi, N. Zacharov, M. Karjalainen: Objective and subjective evaluation of head-related transfer function filter design. Journal of the Audio Engineering Society 47, 4 (1999) 218–239. [Google Scholar]
  20. B. Xie, C. Zhang, X. Zhong: A cluster and subjective selection-based hrtf customization scheme for improving binaural reproduction of 5.1 channel surround sound, in 134th Audio Engineering Society Convention, Rome, Italy, May 4–7, 2013. [Google Scholar]
  21. R. Bomhardt, M. de la Fuente Klein, J. Fels: A high-resolution head-related transfer function and three-dimensional ear model database. Proceedings of Meetings on Acoustics 29, 1 (2016) 050002. [CrossRef] [Google Scholar]
  22. S. Hwang, Y. Park: Interpretations on principal components analysis of head-related impulse responses in the median plane. Journal of the Acoustical Society of America 123, 4 (2008) EL65–EL71. [CrossRef] [PubMed] [Google Scholar]
  23. R. Bomhardt, J. Fels: Individualization of head-related transfer functions by the principle component analysis based on anthropometric measurements. Proceedings of Meetings on Acoustics 140, 4 (2016) 3277–3277. [Google Scholar]
  24. A. Kulkarni, S.K. Isabelle, H.S. Colburn: On the minimum-phase approximation of head-related transfer functions, in Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics, New Paltz, NY, USA, October 15–18, 1995, pp. 84–87. [Google Scholar]
  25. M. Kohnen, R. Bomhardt, J. Fels, M. Vorländer: Just noticeable notch smoothing of head-related transfer functions, in Fortschritte der Akustik – DAGA 2018, Munich, Germany, March 19–22, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.