Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 35
Number of page(s) 13
Section Noise Control
DOI https://doi.org/10.1051/aacus/2023027
Published online 19 July 2023
  1. U. Zillmann, P. Bechtle: Airborne wind energy: Advances in technology development and research. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018. [Google Scholar]
  2. C. Vermillion, L. Fagiano: Electricity in the air: Tethered wind energy systems. ASME. Mechanical Engineering 135, 09 (2013) 13–21. [Google Scholar]
  3. SkySails Power GmbH: Onshore unit sks pn-14. https://skysails-power.com/onshore-unit-pn-14/, 2022. Accessed: 2022-09-26. [Google Scholar]
  4. V. Strouhal: Ueber eine besondere Art der Tonanregung. Annalen der Physik und Chemie 5 (1887) 216–251. [Google Scholar]
  5. M.J. Lighthill: On sound generated aerodynamically: II. Turbulence as a scource of sound. Proceedings of the Royal Society of London 222 (1954) 1–32. [Google Scholar]
  6. H. Fujita: The characteristics of the aeolian tone radiated from two-dimensional cylinders. Fluid Dynamics Research 42, 1 (2010) 015002. [CrossRef] [Google Scholar]
  7. Y. Oguma, T. Yamagata, N. Fujisawa: Measurement of sound source distribution around a circular cylinder in a uniform flow by combined particle image velocimetry and microphone technique. Journal of Wind Engineering and Industrial Aerodynamics 118 (2013) 1–11. [CrossRef] [Google Scholar]
  8. L. Böswirth, S. Bschorer: Technische Strömungslehre, Springer Vieweg Berlin Heidelberg, 10. auflage edition, 2014. [Google Scholar]
  9. M.V. Morkovin: Flow around circular cylinder – a kaleidoscope of challenging fluid phenomena. American Society of Mechanical Engineering, 1964. Symposium on fully separated flows. [Google Scholar]
  10. O. Güven, C. Farell, V.C. Patel: Surface-roughness effects on the mean flow past circular cylinders. Journal of Fluid Mechanics 98, 4 (1980) 673–701. [CrossRef] [Google Scholar]
  11. A. Alomar, D. Angland, X. Zhang, N. Molin: Experimental study of noise emitted by circular cylinders with large roughness. Journal of Sound and Vibration 333, 24 (2014) 6474–6497. [CrossRef] [Google Scholar]
  12. J.H. Gerrard: Measurements of the sound from circular cylinders in an air stream. Proceedings of the Physical Society. Section B 68, 7 (1955) 453–461. [CrossRef] [Google Scholar]
  13. M.M. Zdravkovich: Flow around circular cylinders – volume 1: Fundamentals. Journal of Fluids Engineering 120, 1 (1998) 216. [CrossRef] [Google Scholar]
  14. E. Latorre Iglesias, D.J. Thompson, M.G. Smith: Experimental study of the aerodynamic noise radiated by cylinders with different cross-sections and yaw angles. Journal of Sound and Vibration 361 (2016) 108–129. [CrossRef] [Google Scholar]
  15. S. Yamada, H. Fujita, Y. Maruty, H. Maki, J. Shiraishi: Experimental study on aerodynamic noise generated from two-dimensional models: 2nd report, effect of the angle of inclination of circular cylinders and the angle of attack of square cylinders to aerodynamic noise. Transactions of the Japan Society of Mechanical Engineers Series B 63, 610 (1997) 1974–1979. [CrossRef] [Google Scholar]
  16. Y. Haramoto, S. Yasuda, K. Matsuzaki, M. Munekata, H. Ohba: Analysis of aerodynamic noise generated from inclined circular cylinder. Journal of Thermal Science 9, 2 (2000) 122–128. [CrossRef] [Google Scholar]
  17. W.F. King, B. Barsikow: An experimental study of sound generated by flow interactions with cylinders, 1999. [Google Scholar]
  18. T. Sueki, T. Takaishi, M. Ikeda, N. Arai: Application of porous material to reduce aerodynamic sound from bluff bodies. Fluid Dynamics Research 42 (2010) 015004. [CrossRef] [Google Scholar]
  19. S.J. Lee, H.B. Kim: The effect of surface protrusions on the near wake of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics 69–71 (1997) 351–361. Proceedings of the 3rd International Colloqium on Bluff Body Aerodynamics and Applications. [CrossRef] [Google Scholar]
  20. J. Nebres, S. Batill: Flow about cylinders with helical surface protrusions. In 30th Aerospace Sciences Meeting and Exhibit, 6–9 January 1992, Reno, NV, USA, 1992: 01. [Google Scholar]
  21. L. Li, P. Liu, Y. Xing, H. Guo: Experimental investigation on the noise reduction method of helical cables for a circular cylinder and tandem cylinders. Applied Acoustics 152 (2019) 79–87. [CrossRef] [Google Scholar]
  22. M. Razali, S.F. Zhou, L. Cheng: Experimental investigation on the mechanism of viv reduction using helical strakes. In Twentieth International Offshore and Polar Engineering Conference, 20–25 June 2010, Beijing, China. 2010. [Google Scholar]
  23. Y. Xing, P. Liu, H. Guo, L. Li: Effect of helical cables on cylinder noise control. Applied Acoustics 122 (2017) 152–155. [CrossRef] [Google Scholar]
  24. K. Tsujimoto, S. Furukawa, K. Shimojima, K. Yamamoto: Development of ns-tacsr with extremely suppressed aeolian noise and its application to 500 kv overhead transmission line. IEEE Transactions on Power Delivery 6, 4 (1991) 1586–1592. [CrossRef] [Google Scholar]
  25. S. Dunker, W. Meile, G. Brenn: Experiments in line vibration and associated drag for kites. In 23rd AIAA Aerodynamic Decelerator Systems Technology Conference, 30 Mar – 2 Apr 2015, Daytona Beach, FL. 2015. [Google Scholar]
  26. The Editors of Encyclopedia Britannica: Aeolian harp. https://www.britannica.com/art/Aeolian-harp, 2022. Accessed: 2022-09-26. [Google Scholar]
  27. R. Lerch, G. Sessler, D. Wolf: Technische Akustik. Springer-Verlag Berlin Heidelberg, 2009. [CrossRef] [Google Scholar]
  28. C. Norberg: An experimental investigation of the flow around a circular cylinder: Influence of aspect ratio. Journal of Fluid Mechanics 258 (1994) 287–316. [CrossRef] [Google Scholar]
  29. S. Becker, C. Hahn, M. Kaltenbacher, R. Lerch: Flow-induced sound of wall-mounted cylinders with different geometries. AIAA Journal 46, 9 (2008) 2265–2281. [Google Scholar]
  30. H. Fujita, W. Sha, H. Furutani, H. Suzuki: Experimental investigations and prediction of aerodynamic sound generated from square cylinders. In 4th AIAA/CEAS Aeroacoustics Conference, 2–4 June 1998, Toulouse, France. 1998, 2369 p. [Google Scholar]
  31. M.M. Zdravkovich: Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. Journal of Wind Engineering and Industrial Aerodynamics 7, 2 (1981) 145–189. [CrossRef] [Google Scholar]
  32. C.C. Cardell: Flow past a circular cylinder with a permeable wake splitter plate. PhD thesis, California Institute of Technology, 1993. [Google Scholar]
  33. L. Ong, J. Wallace: The velocity field of the turbulent very near wake of a circular cylinder. Experiments in Fluids 20 (1996) 441–453. [CrossRef] [Google Scholar]
  34. W.M. Chakroun, A.A. Abdel Rahman, M.M.A. Quadri: The effect of surface roughness on flow around a circular cylinder. Wind Engineering 21, 1 (1997) 1–12. [Google Scholar]
  35. R.D. Blevins: Flow-induced vibration. Krieger Publishing Company, 2001. [Google Scholar]
  36. J. Nebres: Wake similarity and vortex formation for two-dimensional bluff bodies. PhD thesis, University of Notre Dame, Indiana, 1992. [Google Scholar]
  37. J. Nebres, S. Batill: Flow about a circular cylinder with a single large-scale surface perturbation. Experiments in Fluids 15 (1993) 369–379. [CrossRef] [Google Scholar]
  38. H.H. Nigim, S.M. Batill: Flow about cylinders with surface perturbations. Journal of Fluids and Structures 11, 8 (1997) 893–907. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.