Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 7
Number of page(s) 9
Section Ultrasonics
DOI https://doi.org/10.1051/aacus/2023001
Published online 07 February 2023
  1. L.E. Kinsler: Fundamentals of acoustics, 3rd ed., Wiley, New York, 1982. [Google Scholar]
  2. B.E. Anderson, S.D. Sommerfeldt: Solving one-dimensional acoustic systems using the impedance translation theorem and equivalent circuits: a graduate level homework assignment. The Journal of the Acoustical Society of America 150 (2021) 4155. https://doi.org/10.1121/10.0008932. [CrossRef] [PubMed] [Google Scholar]
  3. V.T. Rathod: A review of acoustic impedance matching techniques for piezoelectric sensors and transducers. Sensors 20 (2020) 4051. https://doi.org/10.3390/s20144051. [CrossRef] [PubMed] [Google Scholar]
  4. R. Hill, S.M.A. El-Dardiry: A theory for optimization in the use of acoustic emission transducers. The Journal of the Acoustical Society of America 67 (1980) 673–682. https://doi.org/10.1121/1.383893. [CrossRef] [Google Scholar]
  5. F. Grieser, P.K. Choi, N. Enomoto, H. Harada, K. Okitsu, K. Yasui: Sonochemistry and the acoustic bubble, Elsevier, 2015. [Google Scholar]
  6. K. Yasui: Acoustic cavitation and bubble dynamics, Springer, 2018. [CrossRef] [Google Scholar]
  7. A.D. Patil, S.S. Baral, P.B. Dhanke, C.S. Madankar, U.S. Patil, V.S. Kore: Parametric studies of methyl esters synthesis from Thumba seed oil using heterogeneous catalyst under conventional stirring and ultrasonic cavitation. Materials Science for Energy Technologies 1 (2018) 106–116. https://doi.org/10.1016/j.mset.2018.06.004. [CrossRef] [Google Scholar]
  8. R.E. Apfel, C.K. Holland: Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound in Medicine & Biology 17 (1991) 179–185. https://doi.org/10.1016/0301-5629(91)90125-G. [CrossRef] [PubMed] [Google Scholar]
  9. P.R. Gogate, P.A. Tatake, P.M. Kanthale, A.B. Pandit: Mapping of sonochemical reactors: Review, analysis, and experimental verification. AIChE Journal 48 (2002) 1542–1560. https://doi.org/10.1002/aic.690480717. [CrossRef] [Google Scholar]
  10. T. Ouerhani, R. Pflieger, W. Ben Messaoud, S.I. Nikitenko: Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2–Ar mixtures. The Journal of Physical Chemistry B 119 (2015) 15885–15891. https://doi.org/10.1021/acs.jpcb.5b10221. [CrossRef] [PubMed] [Google Scholar]
  11. G.H. Kelsall, S. Tang, S. Yurdakul, A.L. Smith: Electrophoretic behaviour of bubbles in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 92 (1996) 3887–3893. https://doi.org/10.1039/FT9969203887. [CrossRef] [Google Scholar]
  12. M. Penconi, F. Rossi, F. Ortica, F. Elisei, P.L. Gentili: Hydrogen production from water by photolysis, sonolysis and sonophotolysis with solid solutions of rare earth, gallium and indium oxides as heterogeneous catalysts. Sustainability 7 (2015) 9310–9325. https://doi.org/10.3390/su7079310. [CrossRef] [Google Scholar]
  13. O. Johansson, T. Pamidi, T. Lofqvist: Design of a high-intensity ultrasound reactor, The Institute of Electrical and Electronics Engineers, Inc., IEEE, Piscataway. 2017, p. 1. [Google Scholar]
  14. J. Petrovic, G. Thomas: Reaction of aluminum with water to produce hydrogen, 2008, p. 26. [Google Scholar]
  15. A. Gedanken, N. Perkas: in: M. Rizzo, G. Bruno, Eds. Surface coatings, Hauppauge, United states: Nova Science Publishers, Incorporated, 2009:213–236. [Google Scholar]
  16. I. Perelshtein, N. Perkas, A. Gedanken: 12 – the sonochemical coating of textiles with antibacterial nanoparticles, in: A. Tiwari, Ed. Handbook of antimicrobial coatings, Elsevier, 2018:235–255. https://doi.org/10.1016/B978-0-12-811982-2.00012-3. [CrossRef] [Google Scholar]
  17. H.W. Persson, C.H. Hertz, Acoustic impedance matching of medical ultrasound transducers, Ultrasonics 23 (1985) 83–89. https://doi.org/10.1016/0041-624X(85)90037-X. [CrossRef] [PubMed] [Google Scholar]
  18. R. Truell, C. Elbaum, B.B. Chick: 1 – propagation of stress waves in solids, in: R. Truell, C. Elbaum, B.B. Chick, Eds. Ultrasonic methods in solid state physics, Academic Press, 1969:1–52. https://doi.org/10.1016/B978-1-4832-3318-5.50006-7. [Google Scholar]
  19. H. Azhari: Basics of biomedical ultrasound for engineers, Wiley, Wiley.com, 2010. https://www.wiley.com/en-gb/Basics+of+Biomedical+Ultrasound+for+Engineers-p-9780470465479. [CrossRef] [Google Scholar]
  20. COMSOL documentation – ver. 5.4, 2019. COMSOL Inc. https://doc.comsol.com/5.4/doc/com.comsol.help.sme/sme_ug_theory.06.23.html. [Google Scholar]
  21. W. Storr: Amplifier classes and the classification of amplifiers, Basic Electronics Tutorials, 2013 (accessed January 4, 2023). https://www.electronics-tutorials.ws/amplifier/amplifier-classes.html [Google Scholar]
  22. G. Bold: The Bruene directional coupler and transmission lines, 2009. https://www.collinsradio.org. https://www.collinsradio.org/wp-content/uploads/2015/05/Understanding-the-Bruene-Coupler-Transmission-Line-Bold.pdf [Google Scholar]
  23. Y. Sutton, A. Shaw, B. Zeqiri: Measurement of ultrasonic power using an acoustically absorbing well. Ultrasound in Medicine & Biology 29 (2003) 1507–1513. https://doi.org/10.1016/S0301-5629(03)01036-6. [CrossRef] [PubMed] [Google Scholar]
  24. R. Martinez, L. Leija, A. Vera: Ultrasonic attenuation in pure water: Comparison between through-transmission and pulse-echo techniques. In: 2010 Pan American health care exchanges, 15–19 March 2010, Lima, Peru, 2010, pp. 81–84. https://doi.org/10.1109/PAHCE.2010.5474593. [Google Scholar]
  25. E. Hafner: The piezoelectric crystal unit – Definitions and methods of measurement. Proceedings of the IEEE, 57 (1969) 179–201. https://doi.org/10.1109/PROC.1969.6912. [CrossRef] [Google Scholar]
  26. E.B. Dew, A. Kashani Ilkhechi, M. Maadi, N.J.M. Haven, R.J. Zemp: Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements. Microsystems & Nanoengineering 8 (2022) 1–15. https://doi.org/10.1038/s41378-022-00392-0. [CrossRef] [PubMed] [Google Scholar]
  27. L. Prochazka, A. Huber, M. Schneider, N. Ghafoor, J. Birch, F. Pfiffner: Novel fabrication technology for clamped micron-thick titanium diaphragms used for the packaging of an implantable MEMS acoustic transducer. Micromachines 13 (2021) 74. https://doi.org/10.3390/mi13010074. [CrossRef] [PubMed] [Google Scholar]
  28. S. Seifer, N. Perkas: [Data set]. GitHub. https://github.com/Pr4Et/Supplementaries/tree/main/SMD_matching. [Google Scholar]
  29. S. Seifer, L. Houben, M. Elbaum: Flexible STEM with simultaneous phase and depth contrast. Microscopy and Microanalysis 27 (2021) 1476–1487. https://doi.org/10.1017/S1431927621012861. [CrossRef] [Google Scholar]
  30. I. Perelshtein, Y. Ruderman, N. Perkas, K. Traeger, T. Tzanov, J. Beddow, E. Joyce, T.J. Mason, M. Blanes, K. Mollá, A. Gedanken: Enzymatic pre-treatment as a means of enhancing the antibacterial activity and stability of ZnO nanoparticles sonochemically coated on cotton fabrics. Journal of Materials Chemistry 22 (2012) 10736–10742. https://doi.org/10.1039/C2JM31054F. [CrossRef] [Google Scholar]
  31. M.T. Thein, S.-Y. Pung, A. Aziz, M. Itoh: The role of ammonia hydroxide in the formation of ZnO hexagonal nanodisks using sol–gel technique and their photocatalytic study. Journal of Experimental Nanoscience 10 (2015) 1068–1081. https://doi.org/10.1080/17458080.2014.953609. [CrossRef] [Google Scholar]
  32. C. Liang, F.P. Sun, C.A. Rogers: Coupled electro-mechanical analysis of adaptive material systems – determination of the actuator power consumption and system energy transfer. Journal of Intelligent Material Systems and Structures 5 (1994) 12–20. https://doi.org/10.1177/1045389X9400500102. [CrossRef] [Google Scholar]
  33. IEEE Standard on Piezoelectricity: ANSI/IEEE Std 176-1987, 1988, p. 0_1. https://doi.org/10.1109/IEEESTD.1988.79638. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.