Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 24
Number of page(s) 12
Section Computational and Numerical Acoustics
DOI https://doi.org/10.1051/aacus/2023019
Published online 02 June 2023
  1. E. Sturtzer, I. Shahosseini, G. Pillonnet, E. Lefeuvre, G. Lemarquand: High fidelity microelectromechanical system electrodynamic micro-speaker characterization. Journal of Applied Physics 113, 21 (2013) 214905. [CrossRef] [Google Scholar]
  2. M. Vikas Garud, R. Pratap: A novel MEMS speaker with peripheral electrostatic actuation. Journal of Microelectromechanical Systems 29, 4 (2020) 592–599. [CrossRef] [Google Scholar]
  3. I.J. Cho, S. Jang, H.J. Nam: A piezoelectrically actuated MEMS speaker with polyimide membrane and thin film pb(zr, ti)o3(pzt) actuator. Integrated Ferroelectrics 105, 1 (2009) 27–36. [CrossRef] [Google Scholar]
  4. R. Dejaeger, F. Casset, B. Desloges, G. Le Rhun, P. Robert, S. Fanget, Q. Leclère, K. Ege, J.L. Guyader: Development and characterization of a piezoelectrically actuated MEMS digital loudspeaker. Procedia Engineering 47 (2012) 184–187. [CrossRef] [Google Scholar]
  5. T. Veijola, M. Turowski: Compact damping models for laterally moving microstructures with gas-rarefaction effects. Journal of Microelectromechanical Systems 10, 2 (2001) 263–273. [CrossRef] [Google Scholar]
  6. W.M. Beltman: Viscothermal wave propagation including acousto-elastic interaction, Part I: Applications. Journal of Sound and Vibration 227, 3 (1999) 587–609. [CrossRef] [Google Scholar]
  7. A. Trochidis: Vibration damping due to air or liquid layers. Acustica 51, 4 (1982) 201–212. [Google Scholar]
  8. R. Bossart, N. Joly, M. Bruneau: Hybrid numerical and analytical solutions for acoustic boundary problems in thermo-viscous fluids. Journal of Sound and Vibration 263, 1 (2003) 69–84. [CrossRef] [Google Scholar]
  9. M. Berggren, A. Bernland, D. Noreland: Acoustic boundary layers as boundary conditions. Journal of Computational Physics 371 (2018) 633–650. [CrossRef] [Google Scholar]
  10. W.M. Beltman: Viscothermal wave propagation including acousto-elastic interaction. PhD thesis, University of Twente, 1998. [Google Scholar]
  11. M.J.J. Nijhof: Viscothermal wave propagation. PhD thesis, Universiteit Twente, 2010. [Google Scholar]
  12. W.R. Kampinga, Y.H. Wijnant, A. de Boer: An efficient finite element model for viscothermal acoustics. Acta Acustica United with Acustica 97, 4 (2011) 618–631. [CrossRef] [Google Scholar]
  13. W.R. Kampinga, Y.H. Wijnant, A. de Boer: Performance of several viscothermal acoustic finite elements. Acta Acustica united with Acustica 96, 1 (2010) 115–124. [CrossRef] [Google Scholar]
  14. V. Naderyan, R. Raspet, C. Hickey, M. Mohammadi: Analytical and computational modeling of viscothermal acoustic damping in perforated microstructures, in: 23rd International Congress on Acoustics, September, 2019, pp. 7580–7585. [Google Scholar]
  15. V. Naderyan, R. Raspet, C. Hickey: Thermo-viscous acoustic modeling of perforated micro-electro-mechanical systems (MEMS). Journal of the Acoustical Society of America 148, 4 (2020) 2376–2385. [CrossRef] [PubMed] [Google Scholar]
  16. R. Liechti, S. Durand, T. Hilt, F. Casset, C. Dieppedale, T. Verdot, M. Colin: A piezoelectric MEMS loudspeaker lumped and FEM models, in 2021 22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2021, 2021. [Google Scholar]
  17. G. Massimino, C. Gazzola, V. Zega, S. Adorno, A. Corigliano: Ultrasonic piezoelectric MEMS speakers for in-ear applications: bubbles-like and pistons-like innovative designs, in: International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), IEEE, 2022, pp. 2–5. [Google Scholar]
  18. F. Toth, H.H. Guilvaiee, G. Jank: Acoustics on small scales: Modelling viscous effects in MEMS devices. Elektrotechnik und Informationstechnik. 2021. [Google Scholar]
  19. J.N. Reddy, D.K. Gartling: The finite element method in heat transfer and fluid dynamics. 3rd ed., Springer, 2010. [CrossRef] [Google Scholar]
  20. N. Joly: Finite element modeling of thermoviscous acoustics on adapted anisotropic meshes: Implementation of the particle velocity and temperature variation formulation. Acta Acustica United with Acustica 96, 1 (2010) 102–114. [CrossRef] [Google Scholar]
  21. H.H. Guilvaiee, F. Toth, M. Kaltenbacher: A non-conforming finite element formulation for modeling compressible viscous fluid and flexible solid interaction. International Journal for Numerical Methods in Engineering July (2022) 1–21. [Google Scholar]
  22. A. Fritz, S. Hüeber, B.I. Wohlmuth: A comparison of mortar and Nitsche techniques for linear elasticity. Calcolo 41, 3 (2004) 115–137. [CrossRef] [Google Scholar]
  23. M. Kaltenbacher, S. Floss: Nonconforming finite elements based on nitsche-type mortaring for inhomogeneous wave equation. Journal of Theoretical and Computational Acoustics 26, 3 (2018) 1–18. [Google Scholar]
  24. M. Bao, H. Yang: Squeeze film air damping in MEMS. Sensors and Actuators, A: Physical 136, 1 (2007) 3–27. [CrossRef] [Google Scholar]
  25. A. Dantan: Membrane sandwich squeeze film pressure sensors. Journal of Applied Physics 128, 9 (2020) 091101. [CrossRef] [Google Scholar]
  26. S. Naserbakht, A. Dantan: Squeeze film pressure sensors based on SiN membrane sandwiches. Sensors and Actuators, A: Physical 298 (2019) 1–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.