Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 66
Number of page(s) 18
Section Aeroacoustics
DOI https://doi.org/10.1051/aacus/2023058
Published online 15 December 2023
  1. P. Nelson, C. Morfey: Aerodynamic sound production in low speed flow ducts. Journal of Sound Vibration 79, 2 (1981) 263–289. [CrossRef] [Google Scholar]
  2. R.-J. Gibert: Vibrations des structures: interactions avec les fluides, sources d’excitation aléatoires, Eyrolles, Paris, 1988. [Google Scholar]
  3. D. Oldham, A. Ukpoho: A pressure-based technique for predicting regenerated noise levels in ventilation systems. Journal of Sound and Vibration 140, 2 (1990) 259–272. [CrossRef] [Google Scholar]
  4. N. Agarwal: The sound field in fully developed turbulent pipe flow due to internal flow separation, part I: wall-pressure fluctuations. Journal of Sound and Vibration 169, 1 (1994) 89–109. [CrossRef] [Google Scholar]
  5. P. Testud: Aéro-acoustics of ducted diaphragms: whistling and cavitation. Ph.D. thesis, Le Mans, 2006. [Google Scholar]
  6. P. Testud, Y. Aurégan, P. Moussou, A. Hirschberg: The whistling potentiality of an orifice in a confined flow using an energetic criterion. Journal of Sound and Vibration 325, 4–5 (2009) 769–780. [CrossRef] [Google Scholar]
  7. R. Lacombe, P. Moussou, Y. Aurégan: Whistling of an orifice in a reverberating duct at low mach number. Journal of the Acoustical Society of America 130, 5 (2011) 2662–2672. [CrossRef] [PubMed] [Google Scholar]
  8. C.M. Mak, X. Wang, Z.T. Ai: Prediction of flow noise from in-duct spoilers using computational fluid dynamics. Applied Acoustics 76 (2014) 386–390. [CrossRef] [Google Scholar]
  9. E. Alenius, M. Åbom, L. Fuchs: Large eddy simulations of acoustic-flow interaction at an orifice plate. Journal of Sound and Vibration 345 (2015) 162–177. [CrossRef] [Google Scholar]
  10. C. Sovardi, S. Jaensch, W. Polifke: Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low mach number flow. Journal of Sound and Vibration 377 (2016) 90–105. [CrossRef] [Google Scholar]
  11. N. Papaxanthos, E. Perrey-Debain, S. Bennouna, B. Ouedraogo, S. Moreau, J. Ville: Pressure-based integral formulations of Lighthill–Curle’s analogy for internal aeroacoustics at low Mach numbers. Journal of Sound and Vibration 393 (2017) 176–186. [CrossRef] [Google Scholar]
  12. F. Tao, P. Joseph, X. Zhang, O. Stalnov, M. Siercke, H. Scheel: Investigation of the sound generation mechanisms for in-duct orifice plates. Journal of the Acoustical Society of America 142, 2 (2017) 561–572. [CrossRef] [PubMed] [Google Scholar]
  13. C. Cai, C.M. Mak: Generalized flow-generated noise prediction method for multiple elements in air ducts. Applied Acoustics 135 (2018) 136–141. [CrossRef] [Google Scholar]
  14. U. Karban, C. Schram, C. Sovardi, W. Polifke: Prediction of ducted diaphragm noise using a stochastic approach with adapted temporal filters. International Journal of Aeroacoustics 18, 1 (2019) 49–72. [CrossRef] [Google Scholar]
  15. P. Laffay, S. Moreau, M. Jacob, J. Regnard: Experimental investigation of the noise radiated by aducted air flow discharge though diaphragms and perforated plates. Journal of Sound and Vibration 472 (2020) 115177. [CrossRef] [Google Scholar]
  16. S. Yan, C. Li, Y. Xia, G. Li: Analysis and prediction of natural gas noise in a metering station based on CFD. Engineering Failure Analysis 108 (2020) 104296. [CrossRef] [Google Scholar]
  17. P. Moussou: An attempt to scale the vibrations of water pipes. Journal of Pressure Vessel Technology 128, 4 (2006) 670–676. [CrossRef] [Google Scholar]
  18. P. Testud, P. Moussou, A. Hirschberg, Y. Aurégan: Noise generated by cavitating single hole and multi-hole orifices in a water pipe. Journal of Fluids and Structures 23, 2 (2007) 163–189. [CrossRef] [Google Scholar]
  19. S. Kottapalli, A. Hirschberg, V. Anantharaman, D.M. Smeulders, N. Waterson, G. Nakiboglu: Hydrodynamic and acoustic pressure fluctuations in water pipes due to an orifice: comparison of measurements with large eddy simulations. Journal of Sound and Vibration 529 (2022) 116882. [CrossRef] [Google Scholar]
  20. I. Idelchik, M. Steinberg: Handbook of Hydraulic Resistance. Begell House, 1996. [Google Scholar]
  21. P. Durrieu, G. Hofmans, G. Ajello, R. Boot, Y. Aurégan, A. Hirschberg, M.C.A.M. Peters: Quasisteady aero-acoustic response of orifices. Journal of the Acoustical Society of America 110, 4 (2001) 1859–1872. [CrossRef] [PubMed] [Google Scholar]
  22. B. Leonard: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering 88, 1 (1991) 17–74. [CrossRef] [Google Scholar]
  23. L. di Mare, W. Jones: LES of turbulent flow past a swept fence. International Jouranl of Heat and Fluid Flow 24, 4 (2003) 606–615. [CrossRef] [Google Scholar]
  24. P. Tucker: The LES model’s role in jet noise. Progress in Aerospace Sciences 44, 6 (2008) 427–436. [CrossRef] [Google Scholar]
  25. D. Köse, E. Dick: Prediction of the pressure distribution on a cubical building with implicit les. Journal of Wind Engineering and Industrial Aerodynamics 98, 10 (2010) 628–649. [CrossRef] [Google Scholar]
  26. E. Moers, D. Tonon, A. Hirschberg: Strouhal number dependency of the aero-acoustic response of wall perforations under combined grazing-bias flow. Journal of Sound and Vibration 389 (2017) 292–308. [CrossRef] [Google Scholar]
  27. L. Hirschberg, J. Guzman-Inigo, A. Aulitto, J. Sierra, D. Fabre, A. Morgans, A. Hirschberg: Linear theory and experiments for laminar bias flow impedance: orifice shape effect, in: Proceedings CEAS/AIAA 2022, Aeroacoustics Conference, Southampton, UK, 2022. [Google Scholar]
  28. D. Fabre, R. Longobardi, V. Citro, P. Luchini: Acoustic impedance and hydrodynamic instability of the flow through a circular aperture in a thick plate. Journal of Fluid Mechanics 885 (2020) A11. [CrossRef] [Google Scholar]
  29. T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu: A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids 24, 3 (1995) 227–238. [CrossRef] [Google Scholar]
  30. F.S. Lien, M.A. Leschziner: Assessment if turbulent transport model including non-linear RNG eddy-viscosity formulation and second-moment closure. Computers & Fluids 23, 8 (1994) 983–1004. [CrossRef] [Google Scholar]
  31. A. Aulitto, A. Hirschberg, I. Artega, E. Buijessen: Effect of slit length on linear and non-linear acoustic transfer impedance of a micro-slit plate. Acta Acustica 6 (2022) 6. [CrossRef] [EDP Sciences] [Google Scholar]
  32. A. Lichtarowicz, R.K. Duggins, E. Markland: Discharge coefficients for incompressible non cavitating flow through long orifices. Journal of Mechanical Engineering Science 7, 2 (1965) 210–219. [CrossRef] [Google Scholar]
  33. I.F. Rodrigues: Private Communication, 2017. [Google Scholar]
  34. C.M.J. Moonen, N. Waterson, N.R. Kemper, D.M.J. Smeulders: Experimental study of resonance in a water circuit with mixed rigid ducts and flexible housing, in: 11th International Conference on Flow-Induced Vibration (FIV 2016), Den Haag, NL, 2016. [Google Scholar]
  35. A. Powell: On the edgetone. Journal of the Acoustical Society of America 33, 4 (1961) 395–409. [CrossRef] [Google Scholar]
  36. R. Kaykayoglu, D. Rockwell: Unstable jet-edge interaction. Part 1. Instantaneous pressure fields at a single frequency. Journal of Fluid Mechanics 169 (1986) 125–149. [CrossRef] [Google Scholar]
  37. H. Riezebos, J. Mulder, G. Sloet, R. Zwart: Whistling flow straighteners and their influence on us flow meter accuracy, in: 18th North Sea Flow Measurement Workshop, Norvegian Society for Oil and Gas Measurements, Oslo, Norway, 2000. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.