Issue
Acta Acust.
Volume 7, 2023
Topical Issue - Aeroacoustics: state of art and future trends
Article Number 65
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2023060
Published online 14 December 2023
  1. F. Czwielong, J. Soldat, S. Becker: On the interactions of the induced flow field of heat exchangers with axial fans. Experimental Thermal and Fluid Science 139 (2022) 110697. [CrossRef] [Google Scholar]
  2. F. Czwielong, F. Krömer, S. Becker: On the interactions of the induced flow field of heat exchangers with axial fans In: 25th AIAA/CEAS Aeroacoustics Conference. 2019). [Google Scholar]
  3. O. Gustafsson, C.H. Stignor, J.O. Dalenbäck: Heat exchanger design aspects related to noise in heat pump applications. Applied Thermal Engineering 93 (2022) 742–749. [Google Scholar]
  4. S. Moreau: A review of turbomachinery noise: from analytical models to high-fidelity simulations, in: Fundamentals of High Lift for Future Civil Aircraft. 2021, pp. 579–595. [CrossRef] [Google Scholar]
  5. M. Hornikx, M. Kaltenbacher, S. Marburg: A platform for benchmark cases in computational acoustics. Acta Acustica united with Acustica 101, 4 (2015) 811–820. [CrossRef] [Google Scholar]
  6. T. Carolus, T. Zhu, M. Sturm: A low pressure axial fan for benchmarking prediction methods for aerodynamic performance and sound, in: Proceedings of International Conference of Fan Noise, Technology and Numerical Methods. 2015. [Google Scholar]
  7. F. Zenger, C. Junger, M. Kaltenbacher, S. Becker, A benchmark case for aerodynamics and aeroacoustics of a low pressure axial fan. Technical report, SAE Technical Paper. 2016. [Google Scholar]
  8. S. Schoder, F. Czwielong: Dataset fan-01: Revisiting the eaa benchmark for a low-pressure axial fan. 2022. Arxiv preprint arXiv:2211.12014. [Google Scholar]
  9. S. Magne, S. Moreau, A. Berry: Sub-harmonic tonal noise from backflow vortices radiated by a low-speed ring fan in uniform inlet flow. Journal of the Acoustical Society of America 137, 1 (2015) 228–237. [CrossRef] [PubMed] [Google Scholar]
  10. S. Schoder, C. Junger, M. Kaltenbacher: Computational aeroacoustics of the eaa benchmark case of an axial fan. Acta Acustica 4, 5 (2020) 22. [EDP Sciences] [Google Scholar]
  11. T. Schröder, O. Von Estorff: Influence of source term interpolation on hybrid computational aeroacoustics in finite volumes, in: Inter-Noise and Noise-Con Congress and Conference Proceedings, Vol. 253, Institute of Noise Control Engineering, 2016, pp. 5927–5937. [Google Scholar]
  12. S. Schoder, A. Wurzinger, C. Junger, M. Weitz, C. Freidhager, K. Roppert, M. Kaltenbacher: Application limits of conservative source interpolation methods using a low mach number hybrid aeroacoustic workflow. Journal of Theoretical and Computational Acoustics 29, 1 (2021) 2050032. [CrossRef] [Google Scholar]
  13. T. Zhu, D. Lallier-Daniels, M. Sanjosé, S. Moreau, T. Carolus: Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans. Journal of Sound and Vibration 417 (2018) 198–215. [Google Scholar]
  14. A. Pogorelov, M. Meinke, W. Schroeder: Effects of tip-gap width on the flow field in an axial fan. International Journal of Heat and Fluid Flow 61 (2016) 466–481. [CrossRef] [Google Scholar]
  15. A. Corsini, G. Delibra, A.G. Sheard: On the role of leading-edge bumps in the control of stall onset in axial fan blades. Journal of Fluids Engineering 135, 8 (2013) 081104. [CrossRef] [Google Scholar]
  16. M. Kaltenbacher, A. Hüppe, A. Reppenhagen, F. Zenger, S. Becker: Computational aeroacoustics for rotating systems with application to an axial fan. AIAA Journal 55, 11 (2017) 3831–3838. [Google Scholar]
  17. F. Krömer, F. Czwielong, S. Becker: Experimental investigation of the sound emission of skewed axial fans with leading-edge serrations. AIAA Journal 57, 12 (2019) 5182–5196. [CrossRef] [Google Scholar]
  18. S. Schoder, M. Kaltenbacher: Hybrid aeroacoustic computations: State of art and new achievements. Journal of Theoretical and Computational Acoustics 27, 4 (2019) 1950020. [Google Scholar]
  19. H. Chen, S. Chen, W. Matthaeus: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Physical Review A 45, 8 (1992) 5339–5342. [Google Scholar]
  20. H. Chen, C.M. Teixeira, K. Molvig: Realization of fluid boundary conditions via discrete Boltzmann dynamics. International Journal of Modern Physics C 9, 8 (1998) 1281–1292. [CrossRef] [Google Scholar]
  21. H. Chen, S. Kandasamy, S.Ã. Orszag, S. Succi, V. Yakhot: Extended Boltzmann kinetic equation for turbulent flows, Science 301, 5633 (2003) 633–636. [CrossRef] [PubMed] [Google Scholar]
  22. H. Chen, S. Orszag, I. Staroselsky, S. Succi: Expanded analogy between Boltzmann kinetic theory of fluid and turbulence, Journal of Fluid Mechanics 519 (2004) 301–314. [CrossRef] [Google Scholar]
  23. S. Moreau: Direct noise computation of low-speed ring fans. Acta Acustica united with Acustica 105, 1 (2019) 30–42. [CrossRef] [Google Scholar]
  24. D. Ghodake, M. Sanjosé, S. Moreau, M. Henner: Effect of sweep on axial fan noise sources using the lattice boltzmann method. International Journal of Turbomachinery, Propulsion and Power 7, 4 (2022) 34. [CrossRef] [Google Scholar]
  25. X. Shan, X.-F. Yuan, H. Chen: Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, Journal of Fluid Mechanics 550 (2006) 413. [CrossRef] [Google Scholar]
  26. R. Zhang, C. Sun, Y. Li, R. Satti, R. Shock, J. Hoch, H. Chen: Lattice Boltzmann approach for local reference frames. Communications in Computational Physics 5 (2011) 1193–1205. [CrossRef] [Google Scholar]
  27. P.L. Bhatnagar, E.P. Gross, M. Krook: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems Physical Review 94, 3 (1954) 511–525. [CrossRef] [Google Scholar]
  28. H. Chen, C.M. Teixeira, K. Molvig: Digital physics approach to computational fluid dynamics: some basic theoretical features. International Journal of Modern Physics C 8, 4 (1997) 675–684. [CrossRef] [Google Scholar]
  29. H. Chen, R. Zhang, P. Gopalakrishnan: Filtered lattice Boltzmann collision formulation enforcing isotropy and Galilean invariance. Physica Scripta 95, 3 (2020) 034003. https://arxiv.org/abs/2002.02503v1. [CrossRef] [Google Scholar]
  30. G.A. Brès, F. Pèrot, D.M. Freed: Properties of the Lattice-Boltzmann method for acoustics, in: Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), paper 3395. 2009. [Google Scholar]
  31. V. Yakhot, S.A. Orszag: Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1, 1 (1986) 3–51. [CrossRef] [Google Scholar]
  32. V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale: Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A 4, 7 (1992) 1510–1520. [CrossRef] [Google Scholar]
  33. European Acoustics Association: Benchmark Cases for Computational Acoustics. 2017. Accessed: 2022-04-13 https://eaa-bench.mec.tuwien.ac.at/main/. [Google Scholar]
  34. R.B. Kotapati, R. Shock, H. Chen: Lattice-Boltzmann Simulations of flows over backward-facing inclined steps. International Journal of Modern Physics C 25, 1 (2014) 1340021. [CrossRef] [Google Scholar]
  35. B.E. Launder, D.B. Spalding: The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3 (1974) 269–269. [CrossRef] [Google Scholar]
  36. C.M. Teixeira: Incorporating turbulence models into the Lattice-Boltzmann Method. International Journal of Modern Physics C 9 (1998) 1159–1175. [CrossRef] [Google Scholar]
  37. F. Krömer: Sound emission of low-pressure axial fans under distorted inflow conditions, PhD dissertation. FAU University Press, 2018. [Google Scholar]
  38. S. Moreau, M. Sanjose: Sub-harmonic broadband humps and tip noise in low-speed ring fans, Journal of the Acoustical Society of America 139 (2016) 118–127, 01. [CrossRef] [PubMed] [Google Scholar]
  39. Y. Rozenberg, M. Roger, S. Moreau: Fan blade trailing-edge noise prediction using rans simulations. Journal of the Acoustical Society of America 123, 5 (2008) 3688. [CrossRef] [Google Scholar]
  40. P. Sijtsma: Clean based on spatial source coherence. International Journal of Aeroacoustics 6 (2007) 357–374, 04. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.