Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 44
Number of page(s) 29
Section General Linear Acoustics
DOI https://doi.org/10.1051/aacus/2023034
Published online 18 September 2023
  1. M.A. Biot: The theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low- frequency range, II. Higher frequency range. Journal of the Acoustical Society of America 28 (1956) 168–191. [CrossRef] [Google Scholar]
  2. K. Attenborough: Acoustical characteristics of porous materials. Physics Reports 82 (1982) 179–227. [CrossRef] [Google Scholar]
  3. J.-F. Allard, N. Atalla: Propagation of sound in porous media: Modelling sound absorbing materials. 2nd edn., Wiley-Blackwell, 2009. [CrossRef] [Google Scholar]
  4. D. Lafarge, P. Lemarinier, J.-F. Allard, V. Tarnow: Dynamic compressibility of air in porous structures at audible frequencies. Journal of the Acoustical Society of America 102 (1997) 1995–2006. [CrossRef] [Google Scholar]
  5. D.L. Johnson, T.J. Plona: Recent developments in the acoustic properties of porous media. In: D. Sette, Ed. Proceedings of the International School of Physics Enrico Fermi, Course XCIII, vol. 17, North Holland, Amsterdam, 1996, pp. 255–290. [Google Scholar]
  6. L.D. Landau, E. Lifshitz: Electrodynamics of continuous media. Pergamon Press, Oxford, 1960. [Google Scholar]
  7. V.M. Agranovich, V.I. Ginzburg: Spatial dispersion in crystal optics and the theory of excitons. Interscience Publishers, London, 1966. [Google Scholar]
  8. D. Lafarge: Acoustic wave propagation in viscothermal fluids – an electromagnetic analogy. In: N. Jiménez, O. Umnova, J.P. Groby, Eds. Acoustic waves in periodic structures, metamaterials, and porous media, vol. 143, Springer, 2021, pp. 205–272. [CrossRef] [Google Scholar]
  9. D. Lafarge: Nonlocal dynamic homogenization of fluid-saturated metamaterials, in: N. Jiménez, O. Umnova, J.P. Groby, Eds. Acoustic waves in periodic structures, metamaterials and porous media, vol. 143, Springer, 2021, pp. 273–331; Appendix: Local dynamic homogenization of rigid-framed fluid-saturated porous materials, ibid. pp. 316–331. [CrossRef] [Google Scholar]
  10. N. Nemati, A. Kumar, D. Lafarge, N.X. Fang: Nonlocal description of sound propagation through an array of Helmholtz resonators. Comptes Rendus Mécanique 433 (2015) 656–669. [CrossRef] [Google Scholar]
  11. L.L. Beranek: Acoustic impedance of porous materials, Journal of the Acoustical Society of America 13 (1942) 248–260. [CrossRef] [Google Scholar]
  12. C. Truesdell: Precise theory of the absorption and dispersion of forced plane infinitesimal waves according to the Navier-Stokes equations. Journal of Rational Mechanics and Analysis 2 (1953) 643–741. [Google Scholar]
  13. S. Torquato, I.C. Kim: Efficient simulation technique to compute effective properties of heterogeneous media. Applied Physics Letters 55 (1989) 1847–1849. [CrossRef] [Google Scholar]
  14. D. Lafarge: Determination of the dynamic bulk modulus of gases saturating porous media by brownian motion simulation. In: J.L. Auriault, Ed., Poromechanics II, Proceedings of the Second Biot Conference on Poromechanics, Swets and Zeitlinger, Grenoble, 2002, pp. 703–708. [Google Scholar]
  15. C. Perrot, R. Panneton, X. Olny: Computation of the dynamic thermal dissipation properties of porous media by brownian motion simulation: Application to an open-cell aluminum foam. Journal of Applied Physics 102 (2007) 074917. [CrossRef] [Google Scholar]
  16. S. Lifson, J. Jackson: On the self-diffusion of ions in a polyelectrolyte solution. Journal of Chemical Physics 36 (1962) 2410–2414. [CrossRef] [Google Scholar]
  17. L. Pontrjagin, A. Andronow, A. Witt: On the statistical consideration of dynamical systems. Journal of Experimental and Theoretical Physics (in Russian) 3 (1933) 172. [Google Scholar]
  18. D. Lafarge: Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique (Sound propagation in porous materials with rigid structure saturated by a viscothermal fluid). PhD thesis, Université du Maine, 1993. https://cyberdoc.univ-lemans.fr/theses/1993/1993LEMA1009.pdf. [Google Scholar]
  19. M. Avellaneda, S. Torquato: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media. Physics of Fluids A: Fluid Dynamics 3 (1991) 2529–2540. [CrossRef] [Google Scholar]
  20. Y. Champoux, J.-F. Allard: Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics 70 (1991) 1975–1979. [CrossRef] [Google Scholar]
  21. J.-F. Allard, C. Depollier, A. L’Esperance: Observation of the Biot slow wave in a plastic foam of high flow resistance at acoustical frequencies. Journal of Applied Physics 59 (1986) 3367–3370. [CrossRef] [Google Scholar]
  22. J.-F. Allard, Y. Champoux, C. Depollier: Modelization of layered sound absorbing materials with transfer matrices. Journal of the Acoustical Society of America 82 (1987) 1792–1796. [CrossRef] [Google Scholar]
  23. C. Depollier, J.-F. Allard, W. Lauriks: Biot theory and stress-strain equations in porous sound absorbing materials. Journal of the Acoustical Society of America 84 (1988) 2277–2279. [CrossRef] [Google Scholar]
  24. W. Lauriks, A. Cops, J.-F. Allard, C. Depollier, P. Rebillard: Modelization at oblique incidence of layered porous materials with impervious screens. Journal of the Acoustical Society of America 87 (1990) 1200–1206. [CrossRef] [Google Scholar]
  25. J.-F. Allard, C. Depollier, P. Guignouard, P. Rebillard: Effect of a resonance of the frame on the surface impedance of glass wool of high density and stiffness. Journal of the Acoustical Society of America 89 (1991) 999–1001. [CrossRef] [Google Scholar]
  26. P. Guignouard, M. Meisser, J.-F. Allard, P. Rebillard, C. Depollier: Prediction and measurement of the acoustical impedance and absorption coefficient at oblique incidence of porous layers with perforated facings. Noise Control Engineering Journal 36 (1995) 129–135. [Google Scholar]
  27. J.S. Bolton, N.M. Shiau, Y.J. Kang: Sound transmission through multi-panel structures lined with elastic porous materials. Journal of Sound and Vibration 191 (1996) 317–347. [CrossRef] [Google Scholar]
  28. D.L. Johnson, J. Koplik, D. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics 176 (1987) 379–402. [CrossRef] [Google Scholar]
  29. A.N. Norris: On the viscodynamic operator in Biot’s equations of poroelasticity. Journal of Wave-Material Interaction 1 (1986) 365–380. [Google Scholar]
  30. M.A. Biot, D.G. Willis: The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics 24 (1957) 594–601. [CrossRef] [Google Scholar]
  31. R.J.S. Brown: Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fuid-filled porous media. Geophysics 45 (1980) 1269. [CrossRef] [Google Scholar]
  32. D.L. Johnson, J. Koplik, L.M. Schwartz: New pore-size parameter characterizing transport in porous media. Physical Review Letters 57 (1986) 2564–2567. [CrossRef] [PubMed] [Google Scholar]
  33. L.D. Landau, E. Lifshitz: Fluid mechanics. Pergamon Press, 1987. [Google Scholar]
  34. H.A. Lorentz: The theory of electrons and its applications to the phenomena of light and radiant heat, in: A course of lectures delivered in Columbia University, New York, in March and April 1906, Leipzig, B.G. Teubner, 1909. [Google Scholar]
  35. L.D. Landau, E. Lifshitz: Mechanics. Butterworth-Heinemann, 2000. [Google Scholar]
  36. L.D. Landau, E. Lifshitz: Statistical physics. Pergamon Press, London-Paris, 1959. [Google Scholar]
  37. C. Boutin, C. Geindreau: Estimates and bounds of dynamic permeability of granular media, Journal of the Acoustical Society of America 124 (2009) 3576–3593. [Google Scholar]
  38. D. Lafarge: Porous and stratified porous media linear models of propagation, chapter 6, The equivalent fluid model, in: M. Bruneau, C. Potel, Eds., Materials and acoustics handbook, ISTE, Wiley, 2009, pp. 147–202; see pp. 178–179. [CrossRef] [Google Scholar]
  39. C. Perrot, F. Chevillotte, R. Panneton, J.-F. Allard, D. Lafarge: On the dynamic viscous permeability tensor symmetry. Journal of the Acoustical Society of America 124 (2008) EL210–EL217. [CrossRef] [PubMed] [Google Scholar]
  40. L.H. Zheng, Y.C. Chiew: Computer simulation of diffusion-controlled reactions in dispersions of spherical sinks. Journal of Chemical Physics 90 (1989) 322–327. [CrossRef] [Google Scholar]
  41. R. Roncen, Z.E.A. Fellah, D. Lafarge, E. Piot, F. Simon, E. Ogam, M. Fellah, C. Depollier: Acoustical modeling and bayesian inference for rigid porous media in the low-mid frequency regime. Journal of the Acoustical Society of America 144 (2018) 3084–3101. [CrossRef] [PubMed] [Google Scholar]
  42. J. Kergomard, D. Lafarge, J. Gilbert: Transients in porous media: Exact and modelled time-domain Green’s functions. Acta Acustica united with Acustica 99 (2013) 557–571. [CrossRef] [Google Scholar]
  43. G. Kirchhoff: Über des einfluss der wärmeleitung in einem gase auf die schallbewegung. Annalen der Physik 134 (1868) 177–193. English translation: On the influence of thermal conduction in a gas on sound propagation, in: R.B. Lindsay (Ed.), Physical Acoustics, in: Benchmark Papers in Acoustics, Vol. 4, Dowden, Hutchinson and Ross, Stroudsburg, PA, 1974, pp. 7–19. [CrossRef] [Google Scholar]
  44. N. Nemati, D. Lafarge: Check on a nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid framed porous media. Wave Motion 51 (2014) 716–728. [CrossRef] [Google Scholar]
  45. C. Zwikker, C.W. Kosten: Sound absorbing materials. Elsevier Publishing Company Inc., New York, 1949. Reprinted 2012 by the NAG (Nederlands Akoestisch Genootschap), 1949. [Google Scholar]
  46. S.R. Pride, F.D. Morgan, A.F. Gangi: Drag forces of porous-medium acoustics. Physical Review B 47 (1993) 4964–4978. [CrossRef] [PubMed] [Google Scholar]
  47. A. Cortis: Dynamic acoustic parameters of porous media: a theoretical, numerical and experimental investigation. PhD thesis, Delft University of Technology, 2002. [Google Scholar]
  48. R. Burridge, J.B. Keller: Poroelastisity equations derived from microstructure. Journal of the Acoustical Society of America 70 (1981) 1140–1146. [CrossRef] [Google Scholar]
  49. P. Sheng, M.-Y. Zhou: Dynamic permeability in porous media. Physical Review Letters 61 (1988) 1591–1594. [CrossRef] [PubMed] [Google Scholar]
  50. D.M.J. Smeulders, R.L.G.M. Eggels, M.E.H. van Dongen: Dynamic permeability: reformulation of theory and new experimental and numerical data. Journal of Fluid Mechanics 245 (1992) 211–227. [CrossRef] [Google Scholar]
  51. R. Venegas, C. Boutin: Enhancing sound attenuation in permeable heterogeneous materials via diffusion processes. Acta Acustica United with Acustica 104 (2018) 623–635. [CrossRef] [Google Scholar]
  52. A.D. Pierce: Acoustics: An introduction to its physical principles and applications. Wiley-Blackwell, 1989. [Google Scholar]
  53. E. Sanchez-Palencia: Non-homogeneous media and vibration theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, 1980. [Google Scholar]
  54. J.B. Keller: Effective behavior of heterogeneous media, in: U. Landman, Ed., Statistical mechanics and statistical methods in theory and application. Plenum, New York, 1977, pp. 631–644. [CrossRef] [Google Scholar]
  55. A. Bensoussan, J.B.L. Lions, C. Papanicolaou: Asymptotic analysis for periodic structures, in: Studies in mathematics and its applications, vol. 5. North-Holland, Amsterdam, 1978. [Google Scholar]
  56. T.J. Plona: Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Applied Physics Letters 36 (1980) 259–261. [CrossRef] [Google Scholar]
  57. D.L. Johnson: Equivalence between fourth sound in liquid He II at low temperatures and the Biot slow wave in consolidated porous media. Applied Physics Letters 37 (1980) 1065–1067. [CrossRef] [Google Scholar]
  58. T. Levy, E. Sanchez-Palencia: Equations and interface conditions for acoustic phenomena in porous media. Journal of Mathematical Analysis and Applications 61 (1977) 813–834. [CrossRef] [Google Scholar]
  59. G. Russakoff: A derivation of the macroscopic Maxwell equations. American Journal of Physics 38 (1970) 1188–1195. [CrossRef] [Google Scholar]
  60. G. Klein: Mean first-passage times of Brownian motion and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences A211 (1952) 431–443. [Google Scholar]
  61. N. Nemati, Y.E. Lee, D. Lafarge, A. Duclos, N. Fang: Nonlocal dynamics of dissipative phononic fluids. Physical Review B 95 (2017) 224304. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.