Open Access
Acta Acust.
Volume 7, 2023
Article Number 45
Number of page(s) 16
Section Virtual Acoustics
Published online 27 September 2023
  1. F. Rumsey: Surround Sound. In: A. Roginska, P. Geluso, Eds., Immersive sound, Routledge, 2017, pp. 180–220. [Google Scholar]
  2. S. Kim: Height Channels. In: A. Roginska, P. Geluso, Eds., Immersive Sound, Routledge, 2017, pp. 221–243. [Google Scholar]
  3. A. Silzle, S. George, E.A. Habets, T. Bachmann: Investigation on the quality of 3D sound reproduction. In: Proceedings of the International Conference on Spatial Audio, Detmold, Germany, 10–13 November, Verband Deutscher Tonmeister, 2011, pp. 334–341. [Google Scholar]
  4. C. Eaton, H. Lee: Subjective evaluations of three-dimensional, surround and stereo loudspeaker reproductions using classical music recordings. Acoustical Science and Technology 43, 2 (2022) 149–161. [CrossRef] [Google Scholar]
  5. J. Francombe, T. Brookes, R. Mason, J. Woodcock: Evaluation of spatial audio reproduction methods (part 2): analysis of listener preference. Journal of the Audio Engineering Society 65, 3 (2017) 212–225. [CrossRef] [Google Scholar]
  6. C. Guastavino, B.F.G. Katz: Perceptual evaluation of multi-dimensional spatial audio reproduction. Journal of the Acoustical Society of America 116, 2 (2004) 1105–1115. [CrossRef] [PubMed] [Google Scholar]
  7. A. Lindau, V. Erbes, S. Lepa, H.-J. Maempel, F. Brinkman, S. Weinzierl: A Spatial Audio Quality Inventory (SAQI), Acta Acustica united with Acustica 100, 5 (2014) 984–994. [CrossRef] [Google Scholar]
  8. M. Schoeffler, J. Herre: The relationship between basic audio quality and overall listening experience, The Journal of the Acoustical Society of America 140, 3 (2016) 2101–2112. [CrossRef] [PubMed] [Google Scholar]
  9. M. Schoeffler, A. Silzle, J. Herre: Evaluation of spatial/3D audio: basic audio quality versus quality of experience. IEEE Journal of Selected Topics in Signal Processing 11, 1 (2017) 75–88. [CrossRef] [Google Scholar]
  10. E. Hahn: Musical emotions evoked by 3D audio. In: Audio Engineering Society Conference: 2018 AES International Conference on Spatial Reproduction-Aesthetics and Science. 2018. Available at [Google Scholar]
  11. S. Agrawal, S. Bech, K.D. Moor, S. Forchhammer: Influence of changes in audio spatialization on immersion in audiovisual experiences, Journal of the Audio Engineering Society 70, 10 (2022) 810–823. [CrossRef] [Google Scholar]
  12. J. Bergner, D. Schössow, S. Preihs, J. Peissig: Identification of discriminative acoustic dimensions in stereo, surround and 3D music reproduction. Journal of the Audio Engineering Society 71, 7/8 (2023) 420–430. [CrossRef] [Google Scholar]
  13. Y. Wycisk, K. Sander, R. Kopiez, F. Platz, S. Preihs, J. Peissig: Wrapped into sound: development of the immersive music experience inventory (IMEI). Frontiers in Psychology 13 (2022) 951161. [CrossRef] [PubMed] [Google Scholar]
  14. J. Berg, F. Rumsey: Verification and correlation of attributes used for describing the spatial quality of reproduced sound. In: Audio Engineering Society Conference: 19th International Conference: Surround Sound - Techniques, Technology, and Perception. 2001. Available at [Google Scholar]
  15. C. Colomes, S. Le Bagousse, M. Paquier: Families of sound attributes for assessment of spatial audio. In: 129th Audio Engineering Society Convention. Audio Engineering Society. 2010. Available at [Google Scholar]
  16. N. Zacharov, T.H. Pedersen: Spatial sound attributes – development of a common lexicon. In: 139th Audio Engineering Society Convention. 2015. Available at [Google Scholar]
  17. F. Rumsey: Spatial quality evaluation for reproduced sound: terminology, meaning, and a scene-based paradigm. Journal of the Audio Engineering Society 50, 9 (2002) 651–666. Available at [Google Scholar]
  18. C. Zhang, A. Perkis, S. Arndt: Spatial immersion versus emotional immersion, which is more immersive? In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), IEEE, 2017. [Google Scholar]
  19. S. Agrawal, A. Simon, S. Bech, K. Bærentsen, S. Forchhammer: Defining immersion: literature review and implications for research on audiovisual experiences, Journal of the Audio Engineering Society 68, 6 (2020) 404–417. [CrossRef] [Google Scholar]
  20. C. Jennett, A.L. Cox, P. Cairns, S. Dhoparee, A. Epps, T. Tijs, A. Walton: Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies 66, 9 (2008) 641–661. [CrossRef] [Google Scholar]
  21. N.C. Nilsson, R. Nordahl, S. Serafin: Immersion revisited: a review of existing definitions of immersion and their relation to different theories of presence. Human Technology 12, 2 (2016), 108–134. [CrossRef] [Google Scholar]
  22. B.G. Witmer, M.J. Singer: Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators and Virtual Environments 7, 3 (1998) 225–240. [CrossRef] [Google Scholar]
  23. J. Kelly, W. Woszczyk, R. King. Are you there? A literature review of presence for immersive music reproduction. In: 149th Audio Engineering Society Convention, October 27–30, 2020. Online. Available at [Google Scholar]
  24. Y. Georgiou, E.A. Kyza: The development and validation of the ARI questionnaire: An instrument for measuring immersion in location-based augmented reality settings. International Journal of Human-Computer Studies 98 (2017) 24–37. [CrossRef] [Google Scholar]
  25. J.S. Bradley, G.A. Soulodre: Objective measures of listener envelopment. Journal of the Acoustical Society of America 98, 5 (1995) 2590–2597. [CrossRef] [Google Scholar]
  26. H. Furuya, K. Fujimoto, A. Wakuda, Y. Nakano: The influence of total and directional energy of late sound on listener envelopment. Acoustical Science and Technology 26, 2 (2005) 208–211. [CrossRef] [Google Scholar]
  27. J. Pätynen, T. Lokki: Perception of music dynamics in concert hall acoustics. Journal of the Acoustical Society of America 140, 5 (2016) 3787–3798. [CrossRef] [PubMed] [Google Scholar]
  28. G.A. Soulodre, M.C. Lavoie, S.G. Norcross: Objective measures of listener envelopment in multichannel surround systems. Journal of the Audio Engineering Society 51, 9 (2003) 826–840. Available at [Google Scholar]
  29. J. Blauert: Spatial hearing: the psychophysics of human sound localization, MIT Press, 1997. [Google Scholar]
  30. M.S. Engel, A. Fiebig, C. Pfaffenbach, J. Fels: A review of the use of psychoacoustic indicators on soundscape studies. Current Pollution Reports 7, 3 (2021) 359–378. [CrossRef] [Google Scholar]
  31. J. Bergner, J. Peissig: On the identification and assessment of underlying acoustic dimensions of soundscapes, Acta Acustica 6 (2022) 46. [CrossRef] [EDP Sciences] [Google Scholar]
  32. A.M. Sarroff, J.P. Bello: Toward a computational model of perceived spaciousness in recorded music. Journal of the Audio Engineering Society 59, 7/8 (2011) 498–513. Available at [Google Scholar]
  33. R. Hupke, M. Nophut, S. Li, R. Schlieper, S. Preihs, J. Peissig: The immersive media laboratory: Installation of a novel multichannel audio laboratory for immersive media applications. In: 144th Audio Engineering Society Convention. 2018. Available at [Google Scholar]
  34. ITU-R BS.1116-3: Methods for the subjective assessment of small impairments in audio systems. International Telecommunications Union. 2015. [Google Scholar]
  35. J. Abildgaard Pedersen, F. El-Azm: Natural timbre in room correction systems (Part II). In: The Proceeding of the Audio Engineering Society Conference: 32nd International Conference: DSP for Loudspeakers, Hillerød, Denmark, 21–23 September, Audio Engineering Society, 2007. Available at [Google Scholar]
  36. ITU-R BS.2051-2: Advanced sound system for programme production, International Telecommunications Union, 2018. [Google Scholar]
  37. R. Hupke, J. Ordner, J. Bergner, M. Nophut, S. Preihs, J. Peissig: Towards a Virtual Audiovisual Environment for Interactive 3D Audio Productions. In: Audio Engineering Society Conference: 2019 AES International Conference on Immersive and Interactive Audio, York, UK, 27–29 March, Audio Engineering Society, 2019. Available at [Google Scholar]
  38. D. Schössow: QUEST - Questionnaire Editor SysTem, 2022. Available at [Google Scholar]
  39. J.P. Bachorik, M. Bangert, P. Loui, K. Larke, J. Berger, R. Rowe, G. Schlaug: Emotion in motion: investigating the time-course of emotional judgments of musical stimuli. Music Perception 26, 4 (2009) 355–364. [CrossRef] [Google Scholar]
  40. Richard Wagner – Die Walküre. The Metropolitan Opera. Deutsche Grammophon 0734855. 2011. [Google Scholar]
  41. Pyotr Tchaikovsky - Rococo Variations for Cello and Wind Quintet. Orchestra Academy of the Bayerisches Staatsorchester. Hänssler Classic. 2018. [Google Scholar]
  42. J. Meyer, G. Elko: A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield. In: IEEE International Conference on Acoustics Speech and Signal Processing, Orlando, FL, USA, 13–17 May, IEEE, 2002. [Google Scholar]
  43. C. Schörkhuber, M. Zaunschirm, R. Höldrich: Binaural rendering of ambisonic signals via magnitude least squares. In: Fortschritte der Akustik - DAGAMunich, Germany, 19–22 March, Deutsche Gesellschaft für Akustik e.V. (DEGA), 2018, pp. 339–342. [Google Scholar]
  44. B. Bernschütz: A spherical far field HRIR/HRTF compilation of the Neumann KU 100. In: Fortschritte der Akustik – AIA-DAGA 2013, Merano, Italy, 18–21 March, German Acoustical Society (DEGA), Berlin, 2013, pp. 592–595. [Google Scholar]
  45. IEM Plugin Suite: Institut für Elektronische Musik und Akustik, Universität für Musik und darstellende Kunst Graz, 2021. Available at [Google Scholar]
  46. H. Lee, M. Frank, F. Zotter: Spatial and timbral fidelities of binaural Ambisonics decoders for main microphone array recordings. In: Audio Engineering Society Conference: 2019 AES International Conference on Immersive and Interactive Audio, York, UK, 27–29 March, Audio Engineering Society, 2019. Available at [Google Scholar]
  47. S. Spors, H. Wierstorf, A. Raake, F. Melchior, M. Frank, F. Zotter: Spatial sound with loudspeakers and its perception: a review of the current state. Proceedings of the IEEE 101, 9 (2013) 1920–1938. [CrossRef] [Google Scholar]
  48. The Mathworks Inc: Audio Toolbox. 2022. Available at [Google Scholar]
  49. A. Politis: Microphone array processing for parametric spatial audio techniques. PhD thesis, Department of Signal Processing and Acoustics, Aalto University, Finland, 2016. [Google Scholar]
  50. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.x: A toolbox for reproducible research in auditory modeling. Acta Acustica 6 (2022) 19. [CrossRef] [EDP Sciences] [Google Scholar]
  51. Institute of Sound Recording, University of Surrey: AudioCommons timbral models. 2019. Available at [Google Scholar]
  52. S. Olive, T. Welti, E. McMullin, Listener preferences for in-room loudspeaker and headphone target responses. In: 135th Audio Engineering Society Convention, New York, NY, 17–20 October, 2013. Available at [Google Scholar]
  53. C. Zhang: The why, what, and how of immersive experience, IEEE Access 8 (2020) 90878–90888. [CrossRef] [Google Scholar]
  54. J.O. Rawlings, S.G. Pantula, D.A. Dickey, Eds.: Applied regression analysis, Springer-Verlag, 1998. [Google Scholar]
  55. E. Cantoni, N. Jacot, P. Ghisletta: Review and comparison of measures of explained variation and model selection in linear mixed-effects models. Econometrics and Statistics (2021). [PubMed] [Google Scholar]
  56. A. Kuznetsova, P.B. Brockhoff, R.H.B. Christensen: lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82, 13 (2017) 1–26. [CrossRef] [Google Scholar]
  57. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4, Journal of Statistical Software 67, 1 (2015) 1–48. [CrossRef] [Google Scholar]
  58. S. Welham, B. Cullis, B. Gogel, A. Gilmour, R. Thompson: Prediction in linear mixed models. Australian & New Zealand Journal of Statistics 46, 3 (2004) 325–347. [CrossRef] [Google Scholar]
  59. I. Guyon, A. Elisseeff: An introduction to variable and feature selection, Journal of Machine Learning Research 3 (2003) 1157–1182. Available at [Google Scholar]
  60. A. Groll, G. Tutz: Variable selection for generalized linear mixed models by L1-penalized estimation, Statistics and Computing 24, 2 (2012) 137–154. [Google Scholar]
  61. S. Nakagawa, H. Schielzeth: A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4, 2 (2012) 133–142.–210x.2012.00261.x. [Google Scholar]
  62. H. Akaike; A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 6 (1974) 716–723. [CrossRef] [Google Scholar]
  63. H. Vafaie, K. De Jong: Genetic algorithms as a tool for feature selection in machine learning. In: Proceedings Fourth International Conference on Tools with Artificial Intelligence TAI ’92, Arlington, VA, USA, 10–13 November, IEEE. 1992, pp. 200–203. [Google Scholar]
  64. M. Chiesa, G. Maioli, G.I. Colombo, L. Piacentini: GARS: Genetic Algorithm for the identification of a Robust Subset of features in high-dimensional datasets. BMC Bioinformatics 21 (2020) 1. [CrossRef] [PubMed] [Google Scholar]
  65. R. Kohavi, G.H. John: Wrappers for feature subset selection, Artificial Intelligence 97, 1–2 (1997) 273–324. [Google Scholar]
  66. N. Morrow-Howell: The M word: multicollinearity in multiple regression, Social Work Research 18, 4 (1994) 247–251. [CrossRef] [Google Scholar]
  67. D. Ludecke, M. Ben-Shachar, I. Patil, P. Waggoner, D. Makowski: performance: an R package for assessment, comparison and testing of statistical models, Journal of Open Source Software 6, 60 (2021) 3139. [CrossRef] [Google Scholar]
  68. V. Pulkki: Spatial sound reproduction with directional audio coding. Journal of the Audio Engineering Society 55 (2007) 503–516. Available at [Google Scholar]
  69. S. Klockgether, S. van de Par: A model for the prediction of room acoustical perception based on the just noticeable differences of spatial perception, Acta Acustica united with Acustica 100, 5 (2014) 964–971. [CrossRef] [Google Scholar]
  70. M. Morimoto, K. Iida, Y. Furue: Relation between auditory source width in various sound fields and degree of interaural cross-correlation, Applied Acoustics 38, 2–4 (1993) 291–301. [CrossRef] [Google Scholar]
  71. T. Hidaka, T. Okano, L. Beranek: Interaural cross correlation (IACC) as a measure of spaciousness and envelopment in concert halls, Journal of the Acoustical Society of America 92, 4 (1992) 2469–2469. [CrossRef] [Google Scholar]
  72. J. Blauert, W. Lindemann: Auditory spaciousness: some further psychoacoustic analyses. Journal of the Acoustical Society of America 80, 2 (1986) 533–542. [CrossRef] [PubMed] [Google Scholar]
  73. J. Catic, S. Santurette, J.M. Buchholz, F. Gran, T. Dau: The effect of interaural-level-difference fluctuations on the externalization of sound. Journal of the Acoustical Society of America 134, 2 (2013) 1232–1241. [CrossRef] [PubMed] [Google Scholar]
  74. A. Andreopoulou, B.F.G. Katz: Identification of perceptually relevant methods of inter-aural time difference estimation, Journal of the Acoustical Society of America 142, 2 (2017) 588–598. [CrossRef] [PubMed] [Google Scholar]
  75. R. Kiyan, J. Bergner, S. Preihs, Y. Wycisk, D. Schössow, K. Sander, J. Peissig, R. Kopiez: Immersive music experience in surround sound music reproduction [Data set]. Leibniz University Hannover Research Data Repository. 2023. [Google Scholar]
  76. J. Bergner: Soundscape Analysis – Indicators [Code]. GitLab. 2023. [Google Scholar]
  77. R. Kiyan: immersionmodeling [Code]. Leibniz University Hannover GitLab. 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.