Open Access
Issue |
Acta Acust.
Volume 7, 2023
|
|
---|---|---|
Article Number | 55 | |
Number of page(s) | 19 | |
Section | Environmental Noise | |
DOI | https://doi.org/10.1051/aacus/2023047 | |
Published online | 06 November 2023 |
- K. Langer, T. Decker, J. Roosen, K. Menrad: Factors influencing citizens’ acceptance and non acceptance of wind energy in Germany. Journal of Cleaner Production 175 (2018) 133–144. [CrossRef] [Google Scholar]
- I. van Kamp, F. van den Berg: Health effects related to wind turbine sound, including low-frequency sound and infrasound. Acoustics Australia 46, 1 (2018) 31–57. ISSN 08146039. [CrossRef] [Google Scholar]
- P. Maijala: Infrasound does not explain symptoms related to wind turbines, Publications of the Government’s Analysis, Assessment and Research Activities, 2020, p. 34. https://doi.org/http://urn.fi/URN:ISBN:978-952-287-907-3. ISBN 9789522879073. [Google Scholar]
- D.-P. Nguyen, K. Hansen, B. Zajamsek: Human perception of wind farm vibration. Journal of Low Frequency Noise, Vibration and Active Control 39, 1 (2020) 17–27. [CrossRef] [Google Scholar]
- J. Bass, M. Cand, D. Coles, R. Davis, G. Irvine, G. Leventhall, T. Levet, S. Miller, D. Sexton, J. Shelton: Institute of Acoustics: IOA Noise Working Group (Wind Turbine Noise) Amplitude Modulation Working Group Final Report A Method for Rating Amplitude Modulation in Wind Turbine Noise Version 1, 2016. https://www.ioa.org.uk/sites/default/files/AMWG\%20Final\%20Report-09-08-2016_0.pdf. [Google Scholar]
- P.D. Nguyen, K.L. Hansen, B. Lechat, C. Hansen, P. Catcheside: Audibility of wind farm infrasound and amplitude modulated tonal noise at long-range locations. Applied Acoustics 201 (2022) 109106. ISSN 0003-682X. [CrossRef] [Google Scholar]
- J. Pohl, J. Gabriel, G. Hübner: Understanding stress effects of wind turbine noise–the integrated approach. Energy Policy 112 (2018) 119–128. [CrossRef] [Google Scholar]
- S. Schmitter, A.A. Di Loro, D. Hemmer, D. Schreckenberg, S. Grosarth, C. Pörschmann: Noise effects of the use of land-based wind energy, 2022. ISSN 1862-4804. https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/texte_70-2022_noise_effects_of_the_use_of_land-based_wind_energy.pdf. [Google Scholar]
- S. Lee, K. Kim, W. Choi, S. Lee: Annoyance caused by amplitude modulation of wind turbine noise. Noise Control Engineering Journal 59, 1 (2011) 38–46. ISSN 07362501. [CrossRef] [Google Scholar]
- B. Schäffer, R. Pieren, S.J. Schlittmeier, M. Brink: Effects of different spectral shapes and amplitude modulation of broadband noise on annoyance reactions in a controlled listening experiment. International Journal of Environmental Research and Public Health 15, 5 (2018) 1029. [CrossRef] [PubMed] [Google Scholar]
- B. Schäffer, R. Pieren, U.W. Hayek, N. Biver, A. Grêt-Regamey: Influence of visibility of wind farms on noise annoyance – a laboratory experiment with audio-visual simulations. Landscape and Urban Planning 186 (2019) 67–78. [CrossRef] [Google Scholar]
- M. Anderson, J. Kennedy, N. Harte: Low resource species agnostic bird activity detection, in: IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation, 2021-October (November 2022), 2021, pp. 34–39. ISSN 15206130. https://doi.org/10.1109/SiPS52927.2021.00015. [Google Scholar]
- K.L. Hansen, B. Zajamšek, C.H. Hansen: Quantifying the character of wind farm noise, in: 22nd International Congress on Sound and Vibration, ICSV, Florence, Italy, 2015. [Google Scholar]
- K. Conrady, K. Bolin, A. Sjöblom, A. Rutgersson: Amplitude modulation of wind turbine sound in cold climates. Applied Acoustics 158 (2020) 107024. ISSN 1872910X. [CrossRef] [Google Scholar]
- K.L. Hansen, P. Nguyen, B. Zajamšek, P. Catcheside, C.H. Hansen: Prevalence of wind farm amplitude modulation at long-range residential locations. Journal of Sound and Vibration 455, 543 (2019) 136–149. ISSN 10958568. [CrossRef] [Google Scholar]
- J. Cooper, T. Evans, D. Petersen: Method for assessing tonality at residences near wind farms. International Journal of Aeroacoustics 14, 5–6 (2015) 903–908. ISSN 1475-472X. [CrossRef] [Google Scholar]
- H. Luo, C. Hatch, J. Hanna, M. Kalb, A. Weiss, J. Winterton, M. Inalpolat, C. Dannehy: Amplitude modulations in planetary gears. Wind Energy 17, 4 (2014) 505–517. [CrossRef] [Google Scholar]
- G. He, K. Ding, W. Li, Y. Li: Frequency response model and mechanism for wind turbine planetary gear train vibration analysis. IET Renewable Power Generation 11, 4 (2017) 425–432. [CrossRef] [Google Scholar]
- D. Siegel, W. Zhao, E. Lapira, M. AbuAli, J. Lee: A comparative study on vibration-based condition monitoring algorithms for wind turbine drive trains. Wind Energy 17, 5 (2014) 695–714. [CrossRef] [Google Scholar]
- T. Paulraj, P. Välisuo: Effect of wind speed and wind direction on amplitude modulation of wind turbine noise, in: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 255, 2017. [Google Scholar]
- J. Cohen: Statistical power analysis for the behavioral sciences, Lawrence Erlbaum Associates, New York. 1988. ISBN 0-8058-0283-5 [Google Scholar]
- S. Janhunen, A. Grönman, K. Hynynen, M. Hujala, M. Kuisma, P. Härkönen: Audibility of wind turbine noise indoors: Evidence from mixed-method data, in: IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 2017, pp. 164–168. https://doi.org/10.1109/ICRERA.2017.8191260. [Google Scholar]
- C. Larsson, O. Öhlund: Amplitude modulation of sound from wind turbines under various meteorological conditions. The Journal of the Acoustical Society of America 135, 1 (2014) 67–73. ISSN 0001-4966. [CrossRef] [PubMed] [Google Scholar]
- C.H. Hansen, C.J. Doolan, K.L. Hansen: Wind farm noise: measurement, assessment and control, John Wiley & Sons Ltd, 2017. ISBN 9781118826065 [CrossRef] [Google Scholar]
- L. Gaßner, E. Blumendeller, F.J.Y. Müller, M. Wigger, A. Rettenmeier, P.W. Cheng, G. Hübner, J. Ritter, J. Pohl: Joint analysis of resident complaints, meteorological, acoustic, and ground motion data to establish a robust annoyance evaluation of wind turbine emissions. Renewable Energy 188 (2022) 1072–1093. https://doi.org/10.1016/j.renene.2022.02.081 [CrossRef] [Google Scholar]
- L. Gaßner, J. Ritter: Ground motion emissions due to wind turbines: observations, acoustic coupling, and attenuation relationships. Solid Earth 14 (2023) 785–803. [CrossRef] [Google Scholar]
- A. Rettenmeier, F. Haizmann, F. Musiol, M. Wigger, S. Trenchev, M. Schmidt: Insights into the realization of the wind science and engineering test site “WINSENT” in complex terrain, in: Wind Energy Science Conference, WINSENT wind energy research test site, 2021. https://www.zsw-bw.de/en/research/wind-energy/topics/research-test-site-winsent.html [Google Scholar]
- A. Platis, M. Hundhausen, A. Lampert, S. Emeis, J. Bange: The role of atmospheric stability and turbulence in offshore wind-farm wakes in the German Bight. Boundary-Layer Meteorology 182, 3 (2022) 441–469. ISSN 15731472. [CrossRef] [Google Scholar]
- S. Wharton, J.K. Lundquist: Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy (2011) 1–20. https://doi.org/10.1002/we.35. [Google Scholar]
- S. Jennings, J. Kennedy: Detection and evaluation of amplitude modulation from a wind energy development, Ireland. Acta Acustica united with Acustica 105, 6 (2019) 1042–1052. ISSN 18619959. [CrossRef] [Google Scholar]
- American Meteorological Society, 2022. Virtual potential temperature. Glossary of Meteorology. https://glossary.ametsoc.org/wiki/Virtualpotentialtemperature. [Google Scholar]
- J.D. Hunter: Matplotlib: a 2D graphics environment. Computing in Science & Engineering 9, 3 (2007) 90–95. [NASA ADS] [CrossRef] [Google Scholar]
- P.D. Nguyen, K.L. Hansen, P. Catcheside, C.H. Hansen, B. Zajamsek: Long-term quantification and characterisation of wind farm noise amplitude modulation. Measurement: Journal of the International Measurement Confederation 182 (2021) 109678. ISSN 02632241. [CrossRef] [Google Scholar]
- E. Blumendeller, M. Hofsäs, A. Goertlitz, P.W. Cheng: Impact of wind turbine operation conditions on infrasonic and low frequency sound induced by on-shore wind turbines. Journal of Physics: Conference Series 2265 (2022) 032048. https://doi.org/10.1088/1742-6596/2265/3/032048. [CrossRef] [Google Scholar]
- T.R. Haac, K. Kaliski, M. Landis, B. Hoen, J. Rand, J. Firestone, D. Elliott, G. Huebner, J. Pohl: Wind turbine audibility and noise annoyance in a national us survey: Individual perception and influencing factors. The Journal of the Acoustical Society of America 146, 2 (2019) 1124–1141. [CrossRef] [PubMed] [Google Scholar]
- G. Hübner, J. Pohl, B. Hoen, J. Firestone, J. Rand, D. Elliott, R. Haac: Monitoring annoyance and stress effects of wind turbines on nearby residents: a comparison of us and European samples. Environment International 132 (2019) 105090. [CrossRef] [PubMed] [Google Scholar]
- F.J.Y. Müller, V. Leschinger, G. Hübner, J. Pohl: Understanding subjective and situational factors of wind turbine noise annoyance. Energy Policy 173 (2023) 113361. [CrossRef] [Google Scholar]
- K.L. Hansen, P. Nguyen, G. Micic, B. Lechat, P. Catcheside, B. Zajamšek: Amplitude modulated wind farm noise relationship with annoyance: a year-long field study. Journal of the Acoustical Society of America 150, 2 (2021) 1198–1208. ISSN 0001-4966. [CrossRef] [PubMed] [Google Scholar]
- S. Cooper: Wind farm noise — modulation of the amplitude. Acoustics 3 (2021) 364–390. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.