Open Access
Issue |
Acta Acust.
Volume 7, 2023
Topical Issue - CFA 2022
|
|
---|---|---|
Article Number | 56 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/aacus/2023052 | |
Published online | 06 November 2023 |
- P. Zahorik, D.S. Brungart, A.W. Bronkhorst: Auditory distance perception in humans: a summary of past and present research. ACTA Acustica united with Acustica 91, 3 (2005) 409–420. [Google Scholar]
- A.J. Kolarik, B.C.J. Moore, P. Zahorik, S. Cirstea, S. Pardhan: Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Attention, Perception, & Psychophysics 78 (2016) 373–395. [CrossRef] [PubMed] [Google Scholar]
- A. Ihlefeld, B.G. Shinn-Cunningham: Effect of source spectrum on sound localization in an everyday reverberant room. Journal of the Acoustical Society of America 130 (2011) 324–333. [CrossRef] [PubMed] [Google Scholar]
- J. Käsbach, A. Wiinberg, T. May, M.L. Jepsen, T. Dau. Apparent source width perception in normal-hearing, hearing-impaired and aided listeners, DAGA, Nürnberg, 2015. [Google Scholar]
- P. Wang, Z. Lin, X. Qiu: Influence of interaural cross-correlation coefficient and loudness level on auditory source width at different frequency. Applied Acoustics 162 (2020) 107198. [CrossRef] [Google Scholar]
- W.M. Hartmann: Localization of sound in rooms. Journal of the Acoustical Society of America 74, 5 (1983) 1380–1391. [CrossRef] [PubMed] [Google Scholar]
- B.G. Shinn-Cunningham: Localizing sound in rooms, in: ACM/SIGGRAPH and Eurographics Campfire: Acoustic Rendering for Virtual Environments, 2001, pp. 1–6. [Google Scholar]
- M. Rychtáriková, T.V. den Bogaert, G. Vermeir, J. Wouters: Binaural sound source localization in real and virtual rooms. Journal of the Audio Engineering Society 57, 4 (2009) 205–220. [Google Scholar]
- J. Meyer, G. Elko: A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield, in: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, IEEE, 2002, p. II–1781. [CrossRef] [Google Scholar]
- M. Noisternig, A. Sontacchi, T. Musil, R. Holdrich: A 3D ambisonic based binaural sound reproduction system, in: Audio Engineering Society Conference: 24th International Conference: Multichannel Audio, The New Reality, Audio Engineering Society, 2003. [Google Scholar]
- B. Bernschütz, A.V. Giner, C. Pörschmann, J. Arend: Binaural reproduction of plane waves with reduced modal order. Acta Acustica united with Acustica 100, 5 (2014) 972–983. [CrossRef] [Google Scholar]
- G. Routray, P. Dwivedi, R.M. Hegde: Binaural reproduction of HOA signal using sparse multiple measurement vector projections, in: 2021 National Conference on Communications (NCC), IEEE, 2021, pp. 1–6. [Google Scholar]
- E.M. Wenzel, M. Arruda, D.J. Kistler, F.L. Wightman: Localization using nonindividualized head-related transfer functions. Journal of the Acoustical Society of America 94, 1 (1993) 111–123. [CrossRef] [PubMed] [Google Scholar]
- G. Parseihian, B.F. Katz: Rapid head-related transfer function adaptation using a virtual auditory environment. Journal of the Acoustical Society of America 131, 4 (2012) 2948–2957. [CrossRef] [PubMed] [Google Scholar]
- S. Bertet, J. Daniel, E. Parizet, O. Warusfel: Influence of microphone and loudspeaker setup on perceived higher order ambisonics reproduced sound field, in: Proceedings of Ambisonics Symposium, 2009. [Google Scholar]
- S. Braun, M. Frank: Localization of 3D ambisonic recordings and ambisonic virtual sources, in: 1st International Conference on Spatial Audio, Detmold, 2011. [Google Scholar]
- S. Bertet, J. Daniel, E. Parizet, O. Warusfel: Investigation on localisation accuracy for first and higher order ambisonics reproduced sound sources. Acta Acustica united with Acustica 99, 4 (2013) 642–657. [CrossRef] [Google Scholar]
- F.L. Wightman, D.J. Kistler: Headphone simulation of free-field listening. II: psychophysical validation. Journal of the Acoustical Society of America 85, 2 (1989) 868–878. [CrossRef] [PubMed] [Google Scholar]
- R. Mason, N. Ford, F. Rumsey, B. De Bruyn, Verbal and non-verbal elicitation techniques in the subjective assessment of spatial sound reproduction, vol. 5225. Audio Engineering Society Preprint, 2000. [Google Scholar]
- L. Haber, R.N. Haber, S. Penningroth, K. Novak, H. Radgowski: Comparison of nine methods of indicating the direction to objects: data from blind adults. Perception 22, 1 (1993) 35–47. [CrossRef] [PubMed] [Google Scholar]
- M. Gröhn, T. Lokki, T. Takala: Localizing sound sources in a cave-like virtual environment with loudspeaker array reproduction. Presence: Teleoperators and Virtual Environments 16, 2 (2007) 157–171. [CrossRef] [Google Scholar]
- H. Bahu, T. Carpentier, M. Noisternig, O. Warusfel: Comparison of different egocentric pointing methods for 3d sound localization experiments. Acta acustica united with Acustica 102, 1 (2016) 107–118. [CrossRef] [Google Scholar]
- M. Goupell, B. Laback, P. Majdak, M. Mihocic: The accuracy of localizing virtual sound sources: effects of pointing method and visual environment, in: Audio Engineering Society Convention 124, Audio Engineering Society, 2008. [Google Scholar]
- T. Djelani, C. Pörschmann, J. Sahrhage, J. Blauert: An interactive virtual-environment generator for psychoacoustic research II: collection of head-related impulse responses and evaluation of auditory localization. Acta Acustica united with Acustica 86, 6 (2000) 1046–1053. [Google Scholar]
- B. Seeber: A new method for localization studies. Acustica-Stuttgart 88, 3 (2002) 446–449. [Google Scholar]
- P. Majdak, M.J. Goupell, B. Laback: 3-D localization of virtual sound sources: effects of visual environment, pointing method, and training. Attention, Perception, & Psychophysics 72 (2010) 454–469. [CrossRef] [PubMed] [Google Scholar]
- F. Winter, H. Wierstorf, S. Spors: Improvement of the reporting method for closed-loop human localization experiments, in: Audio Engineering Society Convention 142, Audio Engineering Society, 2017. [Google Scholar]
- E.H. Langendijk, A.W. Bronkhorst: Collecting localization response with a virtual acoustic pointer. Journal of the Acoustical Society of America 101 (1997) 3106–3106. [CrossRef] [Google Scholar]
- V. Pulkki, T. Hirvonen: Localization of virtual sources in multichannel audio reproduction. IEEE Transactions on Speech and Audio Processing 13, 1 (2004) 105–119. [Google Scholar]
- S. Bertet: Formats audio 3D hiérarchiques: caractérisation objective et perceptive des systemes ambisonics d’ordres supérieurs. PhD thesis 2009. [Google Scholar]
- R.H. Gilkey, M.D. Good, M.A. Ericson, J. Brinkman, J.M. Stewart: A pointing technique for rapidly collecting localization responses in auditory research. Behavior Research Methods, Instruments, & Computers 27, 1 (1995) 1–11. [CrossRef] [Google Scholar]
- J. Braasch, K. Hartung: Localization in the presence of a distracter and reverberation in the frontal horizontal plane. I. Psychoacoustical data. Acta Acustica United with Acustica 88, 6 (2002) 942–955. [Google Scholar]
- M. Schoeffler, S. Westphal, A. Adami, H. Bayerlein, J. Herre: Comparison of a 2D-and 3D-based graphical user interface for localization listening tests, in: Proceeding of the EAA Joint Symposium on Auralization and Ambisonics, vol. 3, 2014, p. 5. [Google Scholar]
- H.G. Hassager, A. Wiinberg, T. Dau: Effects of hearing-aid dynamic range compression on spatial perception in a reverberant environment. Journal of the Acoustical Society of America 141, 4 (2017) 2556–2568. [CrossRef] [PubMed] [Google Scholar]
- J.C. Gil-Carvajal, J. Cubick, S. Santurette, T. Dau: Spatial hearing with incongruent visual or auditory room cues. Scientific Reports 6 (2016) 37342. [PubMed] [Google Scholar]
- F. Rumsey: Perceptual evaluation: listening strategies, methods, and VR. Journal of the Audio Engineering Society 66, 4 (2018) 301–305. [Google Scholar]
- G.C. Stecker: Using virtual reality to assess auditory performance. The Hearing Journal 72, 6 (2019) 20–22. [Google Scholar]
- S. Fargeot, O. Derrien, G. Parseihian, M. Aramaki, R. Kronland-Martinet: Subjective evaluation of spatial distorsions induced by a sound source separation process, in: EAA Spatial Audio Signal Processing Symposium, 2019, pp. 67–72. [Google Scholar]
- R. Gupta, R. Ranjan, J. He, G. Woon-Seng: Investigation of effect of VR/AR headgear on Head related transfer functions for natural listening, in: Audio Engineering Society Conference: 2018 AES International Conference on Audio for Virtual and Augmented Reality, Audio Engineering Society, 2018. [Google Scholar]
- T. Huisman, A. Ahrens, E. MacDonald: Sound source localization in virtual reality with ambisonics sound reproduction, PsyArXiv, 2021. [Google Scholar]
- M. Berzborn, R. Bomhardt, J. Klein, J.-G. Richter, M. Vorländer, The ITA-toolbox: an open source MATLAB toolbox for acoustic measurements and signal processing, in: Proceedings of the 43th Annual German Congress on Acoustics, Kiel, Germany, vol. 2017, 2017, pp. 6–9. [Google Scholar]
- A. Farina: Simultaneous measurement of impulse response and distortion with a swept-sine technique, in: Audio Engineering Society Convention 108, Audio Engineering Society, 2000. [Google Scholar]
- Datasheet: Eigenbeam data, specifications for eigenbeams. Tech. Rep. 1.4 mh acoustics, LLC, 2016. [Google Scholar]
- T. Carpentier: A new implementation of Spat in Max, in: 15th Sound and Music Computing Conference (SMC2018), 2018, pp. 184–191. [Google Scholar]
- F. Zotter, H. Pomberger, M. Noisternig: Energy-preserving ambisonic decoding. Acta Acustica United with Acustica 98 (2012) 37–47. [CrossRef] [Google Scholar]
- T. Carpentier, M. Noisternig, O. Warusfel: Twenty years of Ircam Spat: Looking back, looking forward, in: 41st International Computer Music Conference (ICMC), 2015, pp. 270–277. [Google Scholar]
- M.J.-M. Macé, F. Dramas, C. Jouffrais: Reaching to sound accuracy in the peri-personal space of blind and sighted humans, in: International Conference on Computers for Handicapped Persons, Springer, 2012, pp. 636–643. [Google Scholar]
- R. Brown, Fitellipse.m, 2023. https://fr.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m. [Google Scholar]
- A. Kuznetsova, R.H. Christensen, C. Bavay, P.B. Brockhoff: Automated mixed ANOVA modeling of sensory and consumer data. Food Quality and Preference 40 (2015) 31–38. [CrossRef] [Google Scholar]
- A. Ahrens, K.D. Lund, M. Marschall, T. Dau: Sound source localization with varying amount of visual information in virtual reality. PloS One 14 (2019) e0214603. [CrossRef] [PubMed] [Google Scholar]
- J. Blauert: Spatial Hearing: The Psychophysics of Human Sound Localization. MIT press, 1997. [Google Scholar]
- J.M. Buchholz, V. Best: Speech detection and localization in a reverberant multitalker environment by normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America 147 (2020) 1469–1477. [CrossRef] [PubMed] [Google Scholar]
- H. Lee, D. Johnson: 3D microphone array comparison: objective measurements. Journal of the Audio Engineering Society 69 (2021) 871–887. [CrossRef] [Google Scholar]
- D.H. Mershon, J.N. Bowers: Absolute and relative cues for the auditory perception of egocentric distance. Perception 8 (1979) 311–322. [CrossRef] [PubMed] [Google Scholar]
- J.M. Loomis, J.M. Knapp: Visual perception of egocentric distance in real and virtual environments. Virtual and Adaptive Environments 11 (2003) 21–46. [Google Scholar]
- C. Armbrüster, M. Wolter, T. Kuhlen, W. Spijkers, B. Fimm: Depth perception in virtual reality: distance estimations in peri-and extrapersonal space. Cyberpsychology & Behavior 11, 1 (2008) 9–15. [CrossRef] [PubMed] [Google Scholar]
- J.W. Kelly, L.A. Cherep, B. Klesel, Z.D. Siegel, S. George: Comparison of two methods for improving distance perception in virtual reality. ACM Transactions on Applied Perception (TAP) 15, 2 (2018) 1–11. [Google Scholar]
- I.T. Feldstein, F.M. Kölsch, R. Konrad: Egocentric distance perception: a comparative study investigating differences between real and virtual environments. Perception 49, 9 (2020) 940–967. [CrossRef] [PubMed] [Google Scholar]
- L. McCormack, V. Pulkki, A. Politis, O. Scheuregger, M. Marschall: Higher-order spatial impulse response rendering: investigating the perceived effects of spherical order, dedicated diffuse rendering, and frequency resolution. Journal of the Audio Engineering Society 68 (2020) 338–354. [CrossRef] [Google Scholar]
- S. Tervo, J. Pätynen, A. Kuusinen, T. Lokki: Spatial decomposition method for room impulse responses. Journal of the Audio Engineering Society 61, 1/2 (2013) 17–28. [Google Scholar]
- P. Stitt, E. Hendrickx, J.C. Messonnier, B.F. Katz: The role of head tracking in binaural rendering, in: 29th Tonmeistertagung, International VDT Convention, 2016. [Google Scholar]
- M. Romanov, P. Berghold, M. Frank, D. Rudrich, M. Zaunschirm, F. Zotter: Implementation and evaluation of a low-cost headtracker for binaural synthesis, in: Audio Engineering Society Convention 142, Audio Engineering Society, 2017. [Google Scholar]
- S. Fargeot, A. Vidal, M. Aramaki, R. Kronland-Martinet: Stimuli for perceptual evaluation of an ambisonic auralization system of measured 3D acoustics [Data set], 2023. https://www.prism.cnrs.fr/publications-media/ACTAACUS23_Fargeot. [Google Scholar]
- S. Fargeot, A. Vidal, M. Aramaki, R. Kronland-Martinet: VRLoc-Toolkit: a set of tools for investigating sound source localization in VR [Code], 2023. https://gitlab.prism.cnrs.fr/fargeot.prism.cnrs.fr/VRLoc-Toolkit. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.