Acta Acust.
Volume 7, 2023
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 42
Number of page(s) 17
Published online 29 August 2023
  1. M. Hainarosie, V. Zainea, R. Hainarosie: The evolution of cochlear implant technology and its clinical relevance, Journal of Medicine and Life 7, 2 (2014) 1–4. [Google Scholar]
  2. F.-G. Zeng: Celebrating the one millionth cochlear implant, JASA Express Letters 2 (2022) 077201. [CrossRef] [PubMed] [Google Scholar]
  3. R.Y. Litovsky, A. Parkinson, J. Arcaroli: Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear Hear 30 (2009) 419–431. [CrossRef] [PubMed] [Google Scholar]
  4. P. Nopp, P. Schleich, P. D’Haese: Sound localization in bilateral users of Med-El Combi 40/40+ cochlear implants. Ear and Hearing 25 (2004) 205–214. [CrossRef] [PubMed] [Google Scholar]
  5. S.A. Ausili, M.J.H. Agterberg, A. Engel, C. Voelter, J.P. Thomas, S. Brill, A.F.M. Snik, S. Dazert, A.J. Van Opstal, E.A.M. Mylanus: Spatial hearing by bilateral cochlear implant users with temporal fine-structure processing. Frontiers in Neurology 11 (2020) 915. [CrossRef] [PubMed] [Google Scholar]
  6. B. Laback, S.-M. Pok, W.-D. Baumgartner, W.A. Deutsch, K. Schmid: Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors. Ear and Hearing 25 (2004) 488–500. [CrossRef] [PubMed] [Google Scholar]
  7. B.U. Seeber, H. Fastl: Localization cues with bilateral cochlear implants. Journal of the Acoustical Society of America 123 (2008) 1030–1042. [CrossRef] [PubMed] [Google Scholar]
  8. H. Hu, M. Dietz, B. Williges, S.D. Ewert: Better-ear glimpsing with symmetrically-placed interferers in bilateral cochlear implant users. Journal of the Acoustical Society of America 143 (2018) 2128–2141. [CrossRef] [PubMed] [Google Scholar]
  9. D.W. Grantham, D.H. Ashmead, T.A. Ricketts, R.F. Labadie, D.S. Haynes: Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants*. Ear and Hearing 28 (2007) 524–541. [CrossRef] [PubMed] [Google Scholar]
  10. R.Y. Litovsky, M.J. Goupell, S. Godar, T. Grieco-Calub, G.L. Jones, S.N. Garadat, S. Agrawal, A. Kan, A. Todd, C. Hess, S. Misurelli: Studies on bilateral cochlear implants at the University of Wisconsin’s binaural hearing and speech laboratory. Journal of the American Academy of Audiology 23 (2012) 476–494. [CrossRef] [PubMed] [Google Scholar]
  11. M. Dietz: Models of the electrically stimulated binaural system: a review. Network: Computation in Neural Systems 27 (2016) 186–211. [CrossRef] [PubMed] [Google Scholar]
  12. G.E. O’Brien, J.T. Rubinstein: The development of biophysical models of the electrically stimulated auditory nerve: single-node and cable models. Network: Computation in Neural Systems 27 (2016) 135–156. [CrossRef] [PubMed] [Google Scholar]
  13. F. Rattay: The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89 (1999) 335–346. [CrossRef] [PubMed] [Google Scholar]
  14. J. Boulet: Biophysical and phenomenological models of cochlear implant stimulation. Ph.D. Thesis. McMaster University, 2016. [Google Scholar]
  15. N.S. Imennov, J.T. Rubinstein: Stochastic population model for electrical stimulation of the auditory nerve. IEEE Transactions on Biomedical Engineering 56 (2009) 2493–2501. [Google Scholar]
  16. N. Mangado, J. Pons-Prats, M. Coma, P. Mistrík, G. Piella, M. Ceresa, M.Á.G. Ballester: Computational evaluation of cochlear implant surgery outcomes accounting for uncertainty and parameter variability. Section of the Journal Frontiers in Physiology. Computational Physiology and Medicine 9 (2018) 498. [Google Scholar]
  17. I.C. Bruce, L.S. Irlicht, M.W. White, S.J.O. Leary, S. Dynes, E. Javel, G.M. Clark: A stochastic model of the electrically stimulated auditory nerve: pulse-train response. IEEE Transactions on Biomedical Engineering 46 (1999) 630–637. [CrossRef] [Google Scholar]
  18. V. Hamacher: Signalverarbeitungsmodelle Des Elektrisch Stimulierten Gehörs. Ph.D. Thesis. RWTH Aachen, Aachen, 2004. [Google Scholar]
  19. C.D.F. Horne, C.J. Sumner, B.U. Seeber: A phenomenological model of the electrically stimulated auditory nerve fiber: temporal and biphasic response properties. Frontiers in Computational Neuroscience 10 (2016) 8. [PubMed] [Google Scholar]
  20. S.N. Joshi, T. Dau, B. Epp: A model of electrically stimulated auditory nerve fiber responses with peripheral and central sites of spike generation. Journal of the Association for Research in Otolaryngology: JARO 18 (2017) 323–342. [CrossRef] [PubMed] [Google Scholar]
  21. J.H. Goldwyn, J.T. Rubinstein, E. Shea-Brown: A point process framework for modeling electrical stimulation of the auditory nerve. Journal of Neurophysiology 108 (2012) 1430–1452. [CrossRef] [PubMed] [Google Scholar]
  22. S. Tabibi, J. Boulet, N. Dillier, I.C. Bruce: Phenomenological model of auditory nerve population responses to cochlear implant stimulation. Journal of Neuroscience Methods 358 (2021) 109212. [CrossRef] [PubMed] [Google Scholar]
  23. M.J. van Gendt, M. Siebrecht, J.J. Briaire, S.M. Bohte, J.H.M. Frijns: Short and long-term adaptation in the auditory nerve stimulated with high-rate electrical pulse trains are better described by a power law. Hearing Research 398 (2020) 108090. [CrossRef] [PubMed] [Google Scholar]
  24. M. Takanen, I.C. Bruce, B.U. Seeber: Phenomenological modelling of electrically stimulated auditory nerve fibers: a review. Network: Computation in Neural Systems 27 (2016) 157–185. [CrossRef] [PubMed] [Google Scholar]
  25. T. Hanekom, J.J. Hanekom: Three-dimensional models of cochlear implants: a review of their development and how they could support management and maintenance of cochlear implant performance. Network: Computation in Neural Systems 27 (2016) 67–106. [CrossRef] [PubMed] [Google Scholar]
  26. I.M. Lei, C. Jiang, C.L. Lei, S.R. de Rijk, Y.C. Tam, C. Swords, M.P.F. Sutcliffe, G.G. Malliaras, M. Bance, Y.Y.S. Huang: 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nature Communications 12 (2021) 6260. [CrossRef] [PubMed] [Google Scholar]
  27. S. Bai, J. Encke, M. Obando-Leitón, R. Weiß, F. Schäfer, J. Eberharter, F. Böhnke, W. Hemmert: Electrical stimulation in the human cochlea: a computational study based on high-resolution micro-CT scans, Frontiers in Neuroscience 13 (2019) 1312. [CrossRef] [PubMed] [Google Scholar]
  28. J.H.M. Frijns, J.J. Briaire, J.J. Grote: The importance of human cochlear anatomy for the results of Modiolus-Hugging multichannel cochlear implants. Otology and Neurotology 22 (2001) 340–349. [CrossRef] [PubMed] [Google Scholar]
  29. W. Nogueira, D. Schurzig, A. Büchner, R.T. Penninger, W. Würfel: Validation of a cochlear implant patient-specific model of the voltage distribution in a clinical setting. Frontiers in Bioengineering and Biotechnology Section Computational Physiology and Medicine 4 (2016) 84. [Google Scholar]
  30. R.K. Kalkman, J.J. Briaire, J.H.M. Frijns: Current focussing in cochlear implants: an analysis of neural recruitment in a computational model. Hearing Research 322 (2015) 89–98. [CrossRef] [PubMed] [Google Scholar]
  31. C. Jiang, S. Singhal, T. Landry, I.V. Roberts, S.R.D. Rijk, T. Brochier, T. Goehring, Y.C. Tam, R.P. Carlyon, G.G. Malliaras, M.L. Bance: An instrumented cochlea model for the evaluation of cochlear implant electrical stimulus spread. IEEE Transactions on Biomedical Engineering 68 (2021) 2281–2288. [Google Scholar]
  32. C.M. McKay, K.R. Henshall, R.J. Farrell, H.J. McDermott: A practical method of predicting the loudness of complex electrical stimuli, Journal of the Acoustical Society of America 113 (2003) 2054–2063. [CrossRef] [PubMed] [Google Scholar]
  33. C.M. McKay: Applications of phenomenological loudness models to cochlear implants. Frontiers in Psychology 11 (2021) 611517. [CrossRef] [PubMed] [Google Scholar]
  34. D. Kelvasa, M. Dietz: Auditory model-based sound direction estimation with bilateral cochlear implants. Trends in Hearing 19 (2015) 2331216515616378. [CrossRef] [Google Scholar]
  35. M. Nicoletti, C. Wirtz, W. Hemmert: Modeling sound localization with cochlear implants. In: J. Blauert, Ed. The Technology of Binaural Listening. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013: 309–331. [CrossRef] [Google Scholar]
  36. S. Fredelake, V. Hohmann: Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation. Hearing Research 287 (2012) 76–90. [CrossRef] [PubMed] [Google Scholar]
  37. T. Brochier, J. Schlittenlacher, I. Roberts, T. Goehring, C. Jiang, D. Vickers, M. Bance: From microphone to phoneme: an end-to-end computational neural model for predicting speech perception with cochlear implants. IEEE Transactions on Biomedical Engineering 69 (2022) 3300–3312. [Google Scholar]
  38. M. Dietz, G. Ashida: Correction to: Computational Models of Binaural Processing: With 93 Illustrations. In: R.Y. Litovsky, M.J. Goupell, R.R. Fay, A.N. Popper, Eds. Binaural Hearing, Springer International Publishing: Cham, 2021: C1–C1. [Google Scholar]
  39. M. Takanen, O. Santala, V. Pulkki: Visualization of functional count-comparison-based binaural auditory model output. Hearing Research 309 (2014) 147–163. [CrossRef] [PubMed] [Google Scholar]
  40. J. Klug, L. Schmors, G. Ashida, M. Dietz: Neural rate difference model can account for lateralization of high-frequency stimuli. Journal of the Acoustical Society of America 148 (2020) 678–691. [Google Scholar]
  41. J. Encke, M. Dietz: A hemispheric two-channel code accounts for binaural unmasking in humans. Communications Biology 5 (2022) 1122. [CrossRef] [PubMed] [Google Scholar]
  42. J.F. Patrick, P.A. Busby, P.J. Gibson: The development of the nucleus freedom cochlear implant system. Trends in Amplification 10 (2006) 175–200. [CrossRef] [PubMed] [Google Scholar]
  43. G. Clark: Cochlear implants: fundamentals and applications. Springer NY, New York. 2003. [CrossRef] [Google Scholar]
  44. G. Ashida, J. Kretzberg, D.J. Tollin: Roles for coincidence detection in coding amplitude-modulated sounds. PLOS Computational Biology 12 (2016) e1004997. [CrossRef] [PubMed] [Google Scholar]
  45. H. Hu, J. Klug, M. Dietz: Simulation of ITD-dependent single-neuron responses under electrical stimulation and with amplitude-modulated acoustic stimuli. Journal of the Association for Research in Otolaryngology 23 (2022) 535–550. [CrossRef] [PubMed] [Google Scholar]
  46. M.T. Pastore, R. Pulling Kathryn, C. Chen, A. Yost William, F. Dorman Michael: Effects of bilateral automatic gain control synchronization in cochlear implants with and without head movements: sound source localization in the frontal hemifield. Journal of Speech, Language, and Hearing Research 64 (2021) 2811–2824. [CrossRef] [PubMed] [Google Scholar]
  47. M. Eklöf, B. Tideholm: The choice of stimulation strategy affects the ability to detect pure tone inter-aural time differences in children with early bilateral cochlear implantation. Acta Oto-Laryngologica 138 (2018) 554–561. [CrossRef] [PubMed] [Google Scholar]
  48. M.F. Dorman, L. Loiselle, J. Stohl, W.A. Yost, A. Spahr, C. Brown, S. Cook: Interaural level differences and sound source localization for bilateral cochlear implant patients. Ear and Hearing 35 (2014) 633–640. [CrossRef] [PubMed] [Google Scholar]
  49. M. Sparreboom, S.A. Ausili, E.A.M. Mylanus: Lateralization of interaural level differences in children with bilateral cochlear implants. Cochlear Implants International 23 (2022) 125–133. [CrossRef] [PubMed] [Google Scholar]
  50. M. Sparreboom, S. Ausili, J.H. Agterberg Martijn, A.M. Mylanus Emmanuel: Bimodal fitting and bilateral cochlear implants in children with significant residual hearing: the impact of asymmetry in spatial release of masking on localization. Journal of Speech, Language, and Hearing Research 64 (2021) 4030–4043. [CrossRef] [PubMed] [Google Scholar]
  51. S.A. Ausili, B. Backus, M.J.H. Agterberg, A.J. van Opstal, M.M. van Wanrooij: Sound localization in real-time vocoded cochlear-implant simulations with normal-hearing listeners. Trends in Hearing 23 (2019) 2331216519847332. [CrossRef] [Google Scholar]
  52. B. Williges, T. Jürgens, H. Hu, M. Dietz: Coherent coding of enhanced interaural cues improves sound localization in noise with bilateral cochlear implants. Trends in Hearing 22 (2018) 2331216518781746. [CrossRef] [Google Scholar]
  53. H. Kayser, S.D. Ewert, J. Anemüller, T. Rohdenburg, V. Hohmann, B. Kollmeier: Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses. EURASIP Journal on Advances in Signal Processing 2009 (2009) 298605. [Google Scholar]
  54. D. Giannoulis, M. Massberg, J.D. Reiss: Digital dynamic range compressor design – a tutorial and analysis. Journal of the Audio Engineering Society 60 (2012) 399–408. [Google Scholar]
  55. B. Vaerenberg, P.J. Govaerts, T. Stainsby, P. Nopp, A. Gault, D. Gnansia: A uniform graphical representation of intensity coding in current-generation cochlear implant systems. Ear and Hearing 35 (2014) 533–543. [CrossRef] [PubMed] [Google Scholar]
  56. A.W. Archer-Boyd, R.P. Carlyon: Simulations of the effect of unlinked cochlear-implant automatic gain control and head movement on interaural level differences. Journal of the Acoustical Society of America 145 (2019) 1389–1400. [CrossRef] [PubMed] [Google Scholar]
  57. R.D. Patterson, I. Nimmo-Smith, J. Holdsworth, P. Rice: An efficient auditory filterbank based on the gammatone function, in A meeting of the IOC Speech Group on Auditory Modelling at RSRE, 14–15 December 1987. [Google Scholar]
  58. V. Hohmann: Frequency analysis and synthesis using a gammatone filterbank. Acta Acustica united with Acustica 88 (2002) 433–442. [Google Scholar]
  59. W. Nogueira, A. Büchner, T. Lenarz, B. Edler: A psychoacoustic, “Nofm”-type speech coding strategy for cochlear implants. EURASIP Journal on Applied Signal Processing 18 (2005) 3044–3059. [Google Scholar]
  60. B.A. Swanson: Pitch perception with cochlear implants. Ph.D. Thesis, Faculty of Medicine, Dentistry & Health Sciences, Otolaryngology Eye and Ear Hospital, The University of Melbourne, 2008. [Google Scholar]
  61. H. Hu, M.E. Lutman, S.D. Ewert, G. Li, S. Bleeck: Sparse nonnegative matrix factorization strategy for cochlear implants. Trends in Hearing 19 (2015) 2331216515616941. [PubMed] [Google Scholar]
  62. B.A. Swanson: Pitch perception with cochlear implants, Department of Otolaryngology, University of Melbourne, 2008. [Google Scholar]
  63. A. Nobbe, P. Schleich, P. Nopp, C. Zierhofer: Vergleich Einer Feinstruktur-Strategie Mit Der CIS+-Strategie Bzgl. Tonhöhenunterscheidung Bei Med-El Benutzern, in Presented at the 9th DGA Jahrestagung, 2006. [Google Scholar]
  64. B.R. Glasberg, B.C.J. Moore: Derivation of auditory filter shapes from notched-noise data. Hearing Research 47 (1990) 103–138. [Google Scholar]
  65. A. Nobbe, P. Schleich, C. Zierhofer, P. Nopp: Frequency discrimination with sequential or simultaneous stimulation in Med-El Cochlear implants. Acta Oto-Laryngologica 127 (2007) 1266–1272. [CrossRef] [PubMed] [Google Scholar]
  66. B.S. Wilson, C.C. Finley, D.T. Lawson, R.D. Wolford, D.K. Eddington, W.M. Rabinowitz: Better speech recognition with cochlear implants. Nature 352 (1991) 236–238. [CrossRef] [PubMed] [Google Scholar]
  67. I. Hochmair, P. Nopp, C. Jolly, M. Schmidt, H. Schößer, C. Garnham, I. Anderson: Med-El cochlear implants: state of the art and a glimpse into the future. Trends in Amplification 10 (2006) 201–219. [CrossRef] [PubMed] [Google Scholar]
  68. Z.M. Smith, A. Kan, H.G. Jones, M. Buhr-Lawler, S.P. Godar, R.Y. Litovsky: Hearing better with interaural time differences and bilateral cochlear implants. Acoustical Society of America Journal 135 (2014) 2190. [CrossRef] [Google Scholar]
  69. R.J.M. van Hoesel, R.S. Tyler: Speech perception, localization, and lateralization with bilateral cochlear implants. Journal of the Acoustical Society of America 113 (2003) 1617–1630. [CrossRef] [PubMed] [Google Scholar]
  70. H. Hu, X. Xi, L.L.N. Wong, S. Hochmuth, A. Warzybok, B. Kollmeier: Construction and evaluation of the Mandarin Chinese Matrix (Cmnmatrix) sentence test for the assessment of speech recognition in noise. International Journal of Audiology 57 (2018) 838–850. [CrossRef] [PubMed] [Google Scholar]
  71. D.D. Greenwood: A cochlear frequency-position function for several species – 29 years later. Journal of the Acoustical Society of America 87 (1990) 2592–2605. [Google Scholar]
  72. M.L. Hughes, P.J. Abbas: Electrophysiologic channel interaction, electrode pitch ranking, and behavioral threshold in straight versus perimodiolar cochlear implant electrode arrays. Journal of the Acoustical Society of America 119 (2006) 1538–1547. [CrossRef] [PubMed] [Google Scholar]
  73. J.J. Tsai, K. Koka, D.J. Tollin: Varying overall sound intensity to the two ears impacts interaural level difference discrimination thresholds by single neurons in the lateral superior olive. Journal of Neurophysiology 103 (2010) 875–886. [CrossRef] [PubMed] [Google Scholar]
  74. M. Dietz, J.-H. Lestang, P. Majdak, R.M. Stern, T. Marquardt, S.D. Ewert, W.M. Hartmann, D.F.M. Goodman: A framework for testing and comparing binaural models. Hearing Research 360 (2018) 92–106. [Google Scholar]
  75. J. Raatgever, On the binaural processing of stimuli with different interaural phase relations. Dissertation, Technische Hogeschool Delft, Netherlands, 1980. [Google Scholar]
  76. B. Laback, K. Egger, P. Majdak: Perception and coding of interaural time differences with bilateral cochlear implants. Hearing Research 322 (2015) 138–150. [CrossRef] [PubMed] [Google Scholar]
  77. A. Ihlefeld, R.P. Carlyon, A. Kan, T.H. Churchill, R.Y. Litovsky: Limitations on monaural and binaural temporal processing in bilateral cochlear implant listeners. Journal of the Association for Research in Otolaryngology 16 (2015) 641–652. [CrossRef] [PubMed] [Google Scholar]
  78. A. Kan, H.G. Jones, R.Y. Litovsky: Lateralization of interaural timing differences with multi-electrode stimulation in bilateral cochlear-implant users. Journal of the Acoustical Society of America 140 (2016) EL392–EL398. [CrossRef] [PubMed] [Google Scholar]
  79. K. Egger, P. Majdak, B. Laback: Channel interaction and current level affect across-electrode integration of interaural time differences in bilateral cochlear-implant listeners. Journal of the Association for Research in Otolaryngology 17 (2016) 55–67. [CrossRef] [PubMed] [Google Scholar]
  80. O.A. Stakhovskaya, M.J. Goupell: Lateralization of interaural level differences with multiple electrode stimulation in bilateral cochlear-implant listeners. Ear and Hearing 38 (2017) e22–e38. [CrossRef] [PubMed] [Google Scholar]
  81. P.G. Mayo, M.J. Goupell: Acoustic factors affecting interaural level differences for cochlear-implant users. Journal of the Acoustical Society of America 147 (2020) EL357–EL362. [CrossRef] [PubMed] [Google Scholar]
  82. R.T. Dwyer, C. Chen, P. Hehrmann, N.C. Dwyer, R.H. Gifford: Synchronized automatic gain control in bilateral cochlear implant recipients yields significant benefit in static and dynamic listening conditions, Trends in Hearing 25 (2021) 23312165211014139. [CrossRef] [Google Scholar]
  83. A. Francl, J.H. McDermott: Deep neural network models of sound localization reveal how perception is adapted to real-world environments. Nature Human Behaviour 6 (2022) 111–133. [CrossRef] [PubMed] [Google Scholar]
  84. P.-A. Grumiaux, S. Kitić, L. Girin, A. Guérin: A survey of sound source localization with deep learning methods. Journal of the Acoustical Society of America 152 (2022) 107–151. [CrossRef] [PubMed] [Google Scholar]
  85. H. Hu, M. Dietz: Comparison of interaural electrode pairing methods for bilateral cochlear implants. Trends in Hearing 19 (2015) 2331216515617143. [PubMed] [Google Scholar]
  86. M.J. Goupell, J.H. Noble, S.A. Phatak, E. Kolberg, M. Cleary, O.A. Stakhovskaya, K.K. Jensen, M. Hoa, H.J. Kim, J.G.W. Bernstein: Computed-tomography estimates of interaural mismatch in insertion depth and scalar location in bilateral cochlear-implant users. 2021. medRxiv. 2021.02.26.21252533. [Google Scholar]
  87. J.G.W. Bernstein, K.K. Jensen, O.A. Stakhovskaya, J.H. Noble, M. Hoa, H.J. Kim, R. Shih, E. Kolberg, M. Cleary, M.J. Goupell: Interaural place-of-stimulation mismatch estimates using CT scans and binaural perception, but not pitch, are consistent in cochlear-implant users, Journal of Neuroscience (2021) JN-RM-0359-21. [Google Scholar]
  88. W.O. Gray, P.G. Mayo, M.J. Goupell, A.D. Brown: Transmission of binaural cues by bilateral cochlear implants: examining the impacts of bilaterally independent spectral peak-picking, pulse timing, and compression. Trends in Hearing 25 (2021) 23312165211030411. [PubMed] [Google Scholar]
  89. A. Kan, Z.E. Peng, K. Moua, R.Y. Litovsky: A systematic assessment of a cochlear implant processor’s ability to encode interaural time differences, in 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2018. [Google Scholar]
  90. M. Dietz, B. Backus: Sound Processing for a Bilateral Cochlear Implant System, No. 15173203.9. EU Patent Application Patent. 2015. [Google Scholar]
  91. T. Gajecki, W. Nogueira: The effect of synchronized linked band selection on speech intelligibility of bilateral cochlear implant users. Hearing Research 396 (2020) 108051. [CrossRef] [PubMed] [Google Scholar]
  92. T. Wendt, S. Van De Par, S.D. Ewert: A computationally-efficient and perceptually-plausible algorithm for binaural room impulse response simulation. Journal of the Audio Engineering Society 62 (2014) 748–766. [CrossRef] [Google Scholar]
  93. C. Kirsch, T. Wendt, S. Par, H. Hu, S. Ewert: Computationally-efficient simulation of late reverberation for inhomogeneous boundary conditions and coupled rooms. Journal of the Audio Engineering Society 71 (2022) 186–201. [Google Scholar]
  94. S. van de Par, S.D. Ewert, L. Hladek, C. Kirsch, J. Schütze, J. Llorca-Bofí, G. Grimm, M.M.E. Hendrikse, B. Kollmeier, B.U. Seeber: Auditory-visual scenes for hearing research. Acta Acustica 6, sup2 (2022) 55. [CrossRef] [EDP Sciences] [Google Scholar]
  95. P. Majdak, F. Zotter, F. Brinkmann, J. De Muynke, M. Mihocic, M. Noisternig: Spatially oriented format for acoustics 2.1: introduction and recent advances. Journal of the Audio Engineering Society 70 (2022) 565–584. [Google Scholar]
  96. S.D. Ewert, O. Buttler, H. Hu: Computationally efficient parametric filter approximations for sound-source directivity and head-related impulse responses, in 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), 2021:1–6. [Google Scholar]
  97. H. Hu, L. Zhou, H. Ma, Z. Wu: HRTF personalization based on artificial neural network in individual virtual auditory space. Applied Acoustics 69 (2008) 163–172. [CrossRef] [Google Scholar]
  98. F. Denk, S.M.A. Ernst, S.D. Ewert, B. Kollmeier: Adapting hearing devices to the individual ear acoustics: database and target response correction functions for various device styles. Trends in Hearing 22 (2018) 2331216518779313. [PubMed] [Google Scholar]
  99. R.M. Baumgärtel, H. Hu, M. Krawczyk-Becker, D. Marquardt, T. Herzke, G. Coleman, K. Adiloğlu, K. Bomke, K. Plotz, T. Gerkmann, S. Doclo, B. Kollmeier, V. Hohmann, M. Dietz: Comparing binaural pre-processing strategies II: speech intelligibility of bilateral cochlear implant users. Trends in Hearing 19 (2015) 2331216515617917. [PubMed] [Google Scholar]
  100. R.M. Baumgärtel, M. Krawczyk-Becker, D. Marquardt, C. Völker, H. Hu, T. Herzke, G. Coleman, K. Adiloğlu, S.M.A. Ernst, T. Gerkmann, S. Doclo, B. Kollmeier, V. Hohmann, M. Dietz: Comparing binaural pre-processing strategies I: instrumental evaluation. Trends in Hearing 19 (2015) 2331216515617916. [PubMed] [Google Scholar]
  101. A.E. Vandali, R.J.M. van Hoesel: Development of a temporal fundamental frequency coding strategy for cochlear implants. Journal of the Acoustical Society of America 129 (2011) 4023–4036. [CrossRef] [PubMed] [Google Scholar]
  102. B.U. Seeber, S. Li: Neural model based sound coding for cochlear implants (Version 0), in Presented at the 19th International Symposium on Hearing: Psychoacoustics, Physiology of Hearing, and Auditory Modelling, from the Ear to the Brain (ISH2022), Lyon, France, 2022. [Google Scholar]
  103. S. Tabibi, A. Kegel, W.K. Lai, N. Dillier: A Bio-Inspired Coding (BIC) strategy for cochlear implants, Hearing Research 388 (2020) 107885. [Google Scholar]
  104. M.J. Fumero, A. Eustaquio-Martín, J.M. Gorospe, R. Polo López, M.A. Gutiérrez Revilla, L. Lassaletta, R. Schatzer, P. Nopp, J.S. Stohl, E.A. Lopez-Poveda: A state-of-the-art implementation of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Hearing Research 409 (2021) 108320. [CrossRef] [PubMed] [Google Scholar]
  105. E.A. Lopez-Poveda, A. Eustaquio-Martín, J.S. Stohl, R.D. Wolford, R. Schatzer, B.S. Wilson: A binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Ear and Hearing 37 (2016) e138–e148. [CrossRef] [PubMed] [Google Scholar]
  106. E.A. Lopez-Poveda, A. Eustaquio-Martín, F.M. San-Victoriano: Binaural pre-processing for contralateral sound field attenuation and improved speech-in-noise recognition. Hearing Research 418 (2022) 108469. [Google Scholar]
  107. T. Potrusil, A. Heshmat, S. Sajedi, C. Wenger, L. Johnson Chacko, R. Glueckert, A. Schrott-Fischer, F. Rattay: Finite element analysis and three-dimensional reconstruction of tonotopically aligned human auditory fiber pathways: a computational environment for modeling electrical stimulation by a cochlear implant based on micro-CT. Hearing Research 393 (2020) 108001. [CrossRef] [PubMed] [Google Scholar]
  108. A.M. Croner, A. Heshmat, A. Schrott-Fischer, R. Glueckert, W. Hemmert, S. Bai: Effects of degrees of degeneration on the electrical excitation of human spiral ganglion neurons based on a high-resolution computer model. Frontiers in Neuroscience 16 (2022) 914876. [CrossRef] [PubMed] [Google Scholar]
  109. R.K. Kalkman, J.J. Briaire, D.M.T. Dekker, J.H.M. Frijns: The relation between polarity sensitivity and neural degeneration in a computational model of cochlear implant stimulation. Hearing Research 415 (2022) 108413. [CrossRef] [PubMed] [Google Scholar]
  110. L. Zamaninezhad, V. Hohmann, A. Büchner, M.R. Schädler, T. Jürgens: A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Hearing Research 344 (2017) 50–61. [CrossRef] [PubMed] [Google Scholar]
  111. T. Jürgens, V. Hohmann, A. Büchner, W. Nogueira: The effects of electrical field spatial spread and some cognitive factors on speech-in-noise performance of individual cochlear implant users – a computer model study, PLOS One 13 (2018) e0193842. [CrossRef] [PubMed] [Google Scholar]
  112. O. Macherey, R.P. Carlyon, A. van Wieringen, J.M. Deeks, J. Wouters: Higher sensitivity of human auditory nerve fibers to positive electrical currents. Journal of the Association for Research in Otolaryngology 9 (2008) 241–251. [CrossRef] [PubMed] [Google Scholar]
  113. J.A. Undurraga, A. van Wieringen, R.P. Carlyon, O. Macherey, J. Wouters: Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites. Hearing Research 269 (2010) 146–161. [Google Scholar]
  114. M. Takanen, B.U. Seeber: A phenomenological model reproducing temporal response characteristics of an electrically stimulated auditory nerve fiber. Trends in Hearing 26 (2022) 23312165221117079. [CrossRef] [Google Scholar]
  115. T. Biberger, S.D. Ewert: Towards a simplified and generalized monaural and binaural auditory model for psychoacoustics and speech intelligibility. Acta Acustica 6 (2022) 23. [CrossRef] [EDP Sciences] [Google Scholar]
  116. S. Jørgensen, S.D. Ewert, T. Dau: A multi-resolution envelope-power based model for speech intelligibility. Journal of the Acoustical Society of America 134 (2013) 436–446. [Google Scholar]
  117. H. Hu, L. Hartog, B. Kollmeier, S.D. Ewert: Spectral and binaural loudness summation of equally loud narrowband signals in single-sided-deafness and bilateral cochlear implant users. Frontiers in Neuroscience 16 (2022) 1–18. [Google Scholar]
  118. I. Pieper, M. Mauermann, B. Kollmeier, S.D. Ewert: Toward an individual binaural loudness model for hearing aid fitting and development. Frontiers in Psychology 12 (2021) 1–23. [CrossRef] [Google Scholar]
  119. M.S.A. Zilany, I.C. Bruce, P.C. Nelson, L.H. Carney: A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. Journal of the Acoustical Society of America 126 (2009) 2390–2412. [Google Scholar]
  120. M. Imsiecke, B. Krüger, A. Büchner, T. Lenarz, W. Nogueira: Interaction between electric and acoustic stimulation influences speech perception in ipsilateral eas users. Ear and Hearing 41 (2020) 868–882. [CrossRef] [PubMed] [Google Scholar]
  121. H. Hu, S.A. Ausili, B. Williges, J. Klug, R.C. Felsheim, D. Vickers, M. Dietz, Matlab Code and Results for the Manuscript Submitted to Acta Acustica “a Model Framework for Simulating Spatial Hearing of Bilateral Cochlear Implants Users” (Version 1.0), Zenodo. 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.