Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 41
Number of page(s) 8
Section Ultrasonics
DOI https://doi.org/10.1051/aacus/2023037
Published online 21 August 2023
  1. P. Debye, F.W. Sears: On the scattering of light by supersonic waves. Proceedings of the National Academy of Sciences of the United States of America 18, 6 (1932) 409–414. [CrossRef] [PubMed] [Google Scholar]
  2. R. Lucas, P. Biquard: Optical properties of solid and liquid medias subjected to high-frequency elastic vibrations. Journal de Physique 71 (1932) 464–477. [Google Scholar]
  3. R. Mertens: On the theory of the diffraction of light by 2 parallel ultrasonic waves, one being the nth harmonic of the other. Zeitschrift fur Physik 160, 3 (1960) 291–296. [CrossRef] [Google Scholar]
  4. L.E. Hargrove, R. Mertens, E.A. Hiedemann: Diffraction of light by 2 spatially separated parallel ultrasonic waves of different frequency. Zeitschrift fur Physik 167, 3 (1962) 326. [CrossRef] [Google Scholar]
  5. O. Leroy, R. Mertens: Diffraction of light by adjacent parallel ultrasonic-waves with arbitrary frequencies (NOA-method). Acustica 26, 2 (1972) 96. [Google Scholar]
  6. M.A. Breazeale, E.A. Hiedemann: Simple way to observe optical diffraction patterns produced by shear waves. Journal of the Acoustical Society of America 27, 6 (1955) 1220–1221. [CrossRef] [Google Scholar]
  7. M.A. Breazeale, B.D. Cook, E.A. Hiedemann: Determination of the form of finite amplitude ultrasonic waves by light refraction. Naturwissenschaften 45, 22 (1958) 537. [CrossRef] [Google Scholar]
  8. M.A. Breazeale, E.A. Hiedemann: The refraction of light by progressive ultrasonic waves of finite amplitude. Naturwissenschaften 45, 7 (1958) 157. [CrossRef] [Google Scholar]
  9. M.A. Breazeale, E.A. Hiedemann: Investigation of progressive ultrasonic waves by light refraction. Journal of the Acoustical Society of America 30, 8 (1958) 751–756. [CrossRef] [Google Scholar]
  10. M.A. Breazeale, E.A. Hiedemann: Optical methods for the measurement of the sound pressure in liquids. Journal of the Acoustical Society of America 31, 1 (1959) 24–28. [CrossRef] [Google Scholar]
  11. M.A. Breazeale, E.A. Hiedemann: Investigation of progressive ultrasonic waves by light refraction. Naturwissenschaften 47, 10 (1960) 222. [CrossRef] [Google Scholar]
  12. M.A. Breazeale, E.A. Hiedemann: Diffraction patterns produced by finite amplitude waves. Journal of the Acoustical Society of America 33, 5 (1961) 700. [CrossRef] [Google Scholar]
  13. V.F. Goos, H. Hänchen: Ein neuer und fundamentaler versuch zur totalreflexion. Annalen der Physik 6, 1 (1947) 333–364. [CrossRef] [Google Scholar]
  14. T. Tamir, H.L. Bertoni: Lateral displacement of optical beams at multilayered and periodic structures. Journal of the Acoustical Society of America 61 (1971) 1397–1413. [CrossRef] [Google Scholar]
  15. M.A. Breazeale, L. Adler, G.W. Scott: Interaction of ultrasonic-waves incident at Rayleigh angle onto a liquid-solid interface. Journal of Applied Physics 48, 2 (1977) 530–537. [CrossRef] [Google Scholar]
  16. M.A. Breazeale, L. Adler, J.H. Smith: Energy redistribution of a Gaussian ultrasonic beam reflected from liquid-solid interface. Soviet Physics Acoustics-USSR 21, 1 (1975) 1–6. [Google Scholar]
  17. L. Adler, M.A. Breazeale, G.W. Scott: Another look at problem of energy redistribution of a Gaussian ultrasonic beam at a liquid-solid interface. Journal of the Acoustical Society of America 57 (1975) S38–S39. [CrossRef] [Google Scholar]
  18. A. Schoch: Der Durchgang von Ultraschall durch Platten. Nuovo Cimento 7, Suppl. 2 (1950) 302. [CrossRef] [Google Scholar]
  19. A. Schoch: Der Schalldurchgang durch plate. Acustica 2 (1952) 1–17. [Google Scholar]
  20. A. Schoch: Seitliche Versetzung eines total-reflektierten Strahls bei Ultraschallwellen. Acustica 2 (1952) 18–19. [Google Scholar]
  21. J. Kutzner: On the beam displacement of an ultrasonic transverse-wave reflected at a free-boundary surface. Acustica 45, 1 (1980) 25–29. [Google Scholar]
  22. V.V. Filippov: Displacement of acoustic beams reflected at the free solid boundary. Doklady Akademii Nauk Belarusi 26, 6 (1982) 511–512. [Google Scholar]
  23. V.I. Alshitz, A.N. Darinskii, R.K. Kotovski, A.L. Shuvalov: Schoch effect analog during the reflection of acoustic beams from the free-boundary of a crystal. Kristallografiya 33, 3 (1988) 541–553. [Google Scholar]
  24. T.V. Lapteva, S.V. Tarasenko, V.G. Shavrov: New mechanism of the Schoch effect in nonmagnetic dielectrics. JETP Letters 85, 12 (2007) 617–621. [CrossRef] [Google Scholar]
  25. Z.W. Chen, Y.W. Yao, F.G. Wu, X. Zhang, H.F. Dong, S.F. Lu, L.X. Han: The Schoch effect mechanism analysis and its regulation of two dimensional three components phononic crystal. Scientia Sinica-Physica Mechanica & Astronomica 47, 6 (2017) 064301. [CrossRef] [Google Scholar]
  26. W.G. Neubauer, L.R. Dragonet: Measurement of Rayleigh phase velocity and estimates of shear speed by Schlieren visualization. Journal of Applied Physics 45, 2 (1974) 618–622. [CrossRef] [Google Scholar]
  27. M.A. Breazeale: From monochromatic light diffraction to colour Schlieren photography. Journal of Optics A: Pure and Applied Optics 3 (2001) S1–S7. [CrossRef] [Google Scholar]
  28. K. Ma, H. Chen, Z. Wu, X. Hao, G. Yan, W. Li, L. Shao, G. Meng, W. Zhang: A wave-confining metasphere beamforming acoustic sensor for superior human-machine voice interaction. Science Advances 8, 39 (2022) eadc9230. [CrossRef] [PubMed] [Google Scholar]
  29. K. Song, J.-H. Kwak, J.J. Park, S. Hur, M. Anzan-Uz-Zaman, J. Kim: Acoustic beam forming based on a surface with sinusoidally modulated admittance. Physical Review Applied 10 (2018) 044025. [CrossRef] [Google Scholar]
  30. L. Zhao, E. Laredo, O. Ryan, A. Yazdkhasti, H.-T. Kim, R. Ganye, T. Horiuchi, M. Yu: Ultrasound beam steering with flattened acoustic metamaterial Luneburg lens. Applied Physics Letters 116, 7 (2020) 071902. [CrossRef] [Google Scholar]
  31. C.-T. Michael Wu, P.-Y. Chen: Low-Profile Metamaterial-Based Adaptative Beamforming Techniques, in Modern Printed-Circuit Antennas, Hussain Al-Rizzo, Editor. Rijeka, 2020. [Google Scholar]
  32. H. Zhu, F. Semperlotti, A passively tunable acoustic metamaterial lens for selective ultrasonic excitation, Journal of Applied Physics 1169 (2014) 094901–094901.5. [CrossRef] [Google Scholar]
  33. S. Guenneau, A. Movchan, G. Pétursson, S. Anantha Ramakrishna: Acoustic metamaterials for sound focusing and confinement, New Journal of Physics 9 (2007) 399. [CrossRef] [Google Scholar]
  34. F. Ma, Z. Huang, C. Liu, J. H. Wu: Acoustic focusing and imaging via phononic crystal and acoustic metamaterials. Journal of Applied Physics 131, 1 (2022) 011103. [CrossRef] [Google Scholar]
  35. G. Song, B. Huang, H. Dong: Broadband focusing acoustic lens based on fractal metamaterials, Scientific Reports 6 (2016) 35929. [CrossRef] [PubMed] [Google Scholar]
  36. S.-C. Steven Lin, B.R. Tittmann, T.J. Huang: Design of acoustic beam aperture modifier using gradient-index phononic crystals. Journal of Applied Physics 111, 12 (2012) 123510. [CrossRef] [PubMed] [Google Scholar]
  37. L. Zhao: Acoustic metamaterial beam splitter. Cornell University, arXiv:2303.16370, 2023. [Google Scholar]
  38. M. Ambati, N. Fang, C. Sun, X. Zhang: Surface resonant states and superlensing in acoustic metamaterials. Physical Review B (Condensed Matter and Materials Physics) 75, 19 (2007) 195447. [CrossRef] [Google Scholar]
  39. N.F. Declercq: Fast beating null strip during the reflection of pulsed Gaussian beams incident at the Rayleigh angle. Ultrasonics 44, 1 (2006) E1447–E1451. [Google Scholar]
  40. Y. Bouzidi, D.R. Schmitt: Quantitative modeling of reflected ultrasonic bounded beams and a new estimate of the Schoch shift. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 12 (2008) 2661–2673. [CrossRef] [PubMed] [Google Scholar]
  41. P.B. Nagy, L. Adler: On the origin of increased backward radiation from a liquid-solid interface at the Rayleigh angle. Journal of the Acoustical Society of America 85 (1989) 1355–1357. [CrossRef] [Google Scholar]
  42. P.B. Nagy, L. Adler: Increased incoherent backscattering from a liquid-solid interface at the Rayeigh angle. Journal of the Acoustical Society of America 96 (1994) 2537–2545. [CrossRef] [Google Scholar]
  43. M. Blakemore: Scattering of acoustic waves by the rough surface of an elastic solid. Ultrasonics 31, 3 (1993) 161–174. [CrossRef] [Google Scholar]
  44. A.N. Norris: “The influence of beam type on the back reflection of ultrasonic beams from a liquid-solid interface. Journal of the Acoustical Society of America 76 (1984) 629–631. [CrossRef] [Google Scholar]
  45. J. Pott, J.G. Harris: Scattering of an acoustic Gaussian-beam from a fluid solid interface. Journal of the Acoustical Society of America 76, 6 (1984) 1829–1838. [CrossRef] [Google Scholar]
  46. J.J. Stamnes: Role of backward waves in backscattering of ultrasonic beams at a liquid solid interface. Journal of the Acoustical Society of America 76, 2 (1984) 627–629. [CrossRef] [Google Scholar]
  47. A.N. Norris: Back reflection of ultrasonic-waves from a liquid solid interface. Journal of the Acoustical Society of America 73, 2 (1983) 427–434. [CrossRef] [Google Scholar]
  48. N.F. Declercq: Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves. Ultrasonics 54, 2 (2013) 609–613. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.