Acta Acust.
Volume 7, 2023
Topical Issue - CFA 2022
Article Number 39
Number of page(s) 14
Published online 31 July 2023
  1. G. Saunders: Treatise on Theaters. I. and J. Taylor, 1790. [Google Scholar]
  2. H.K. Dunn, D.W. Farnsworth: Exploration of pressure field around the human head during speech. Journal of the Acoustical Society of America 10 (1939) 184–199. [CrossRef] [Google Scholar]
  3. A.H. Marshall, J. Meyer: The directivity and auditory impressions of singers. Acta Acustica united with Acustica 58 (1985) 130–140. [Google Scholar]
  4. W. Chu, A. Warnock: Detailed directivity of sound fields around human talkers. Technical report, Institute for Research in Construction, National Research Council of Canada, Ottawa, ON, Canada, 2002. [Google Scholar]
  5. B.B. Monson, E.J. Hunter, B.H. Story: Horizontal directivity of low-and high-frequency energy in speech and singing. Journal of the Acoustical Society of America 132 (2012) 433–441. [CrossRef] [PubMed] [Google Scholar]
  6. M. Frič, I. Podzimková: Comparison of sound radiation between classical and pop singers. Biomedical Signal Processing and Control 66 (2021) 102426. [CrossRef] [Google Scholar]
  7. T. Leishman, S.D. Bellows, C.M. Pincock, J.K. Whiting: High-resolution spherical directivity of live speech from a multiple-capture transfer function method. The Journal of the Acoustical Society of America 149 (2021) 1507–1523. [CrossRef] [PubMed] [Google Scholar]
  8. C. Pörschmann, J.M. Arend: Investigating phoneme dependencies of spherical voice directivity patterns. Journal of the Acoustical Society of America 149 (2021) 4553–4564. [CrossRef] [PubMed] [Google Scholar]
  9. J.L. Flanagan: Analog measurements of sound radiation from the mouth. Journal of the Acoustical Society of America 32 (1960) 1613–1620. [CrossRef] [Google Scholar]
  10. K. Sugiyama, H. Irii: Comparison of the sound pressure radiation from a prolate spheroid and the human mouth. Acta Acustica united with Acustica 73 (1991) 271–276. [Google Scholar]
  11. J. Huopaniemi, K. Kettunen, J. Rahkonen: Measurement and modeling techniques for directional sound radiation from the mouth, in Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 1999, pp. 183–186. [Google Scholar]
  12. M. Arnela, O. Guasch, F. Alas: Effects of head geometry simplifications on acoustic radiation of vowel sounds based on time-domain finite-element simulations. Journal of the Acoustical Society of America 134 (2013) 2946–2954. [CrossRef] [PubMed] [Google Scholar]
  13. T. Yoshinaga, A. Van Hirtum, K. Nozaki, S. Wada: Influence of the lip horn on acoustic pressure distribution pattern of sibilant /s/. Acta Acustica united with Acustica 104 (2018) 145–152. [CrossRef] [Google Scholar]
  14. R. Blandin, A. Van Hirtum, X. Pelorson, R. Laboissière: The effect on vowel directivity patterns of higher order propagation modes. Journal of Sound and Vibration 432 (2018) 621–632. [CrossRef] [Google Scholar]
  15. M. Brandner, R. Blandin, M. Frank, A. Sontacchi: A pilot study on the influence of mouth configuration and torso on singing voice directivity. Journal of the Acoustical Society of America 148 (2020) 1169–1180. [CrossRef] [PubMed] [Google Scholar]
  16. R. Blandin, B.B. Monson, M. Brandner: Influence of speech sound spectrum on the computation of octave band directivity patterns, in Forum Acusticum, Lyon, France, December 7–11, 2020, pp. 2027–2033. [Google Scholar]
  17. P. Kocon, B.B. Monson: Horizontal directivity patterns differ between vowels extracted from running speech. Journal of the Acoustical Society of America 144 (2018) EL7–EL12. [CrossRef] [PubMed] [Google Scholar]
  18. Y. Kagawa, R. Shimoyama, T. Yamabuchi, T. Murai, K. Takarada: Boundary element models of the vocal tract and radiation field and their response characteristics. Journal of Sound and Vibration 157 (1992) 385–403. [CrossRef] [Google Scholar]
  19. P. Birkholz, S. Ossmann, R. Blandin, A. Wilbrandt, P.K. Krug, M. Fleischer: Modeling speech sound radiation with different degrees of realism for articulatory synthesis. IEEE Access 10 (2022) 95008–95019. [CrossRef] [Google Scholar]
  20. L. Johannsen: Numerical simulation of voice directivity patterns for different phonemes. TU, Berlin, 2021. [Google Scholar]
  21. R. Blandin, M. Arnela, R. Laboissière, X. Pelorson, O. Guasch, A. Van Hirtum, X. Laval: Effects of higher order propagation modes in vocal tract like geometries. Journal of the Acoustical Society of America 137 (2015) 832–843. [CrossRef] [PubMed] [Google Scholar]
  22. R. Blandin, A. Van Hirtum, X. Pelorson, R. Laboissière: Influence of higher order acoustical propagation modes on variable section waveguide directivity: Application to vowel. Acta Acustica united with Acustica 102 (2016) 918–929. [CrossRef] [Google Scholar]
  23. R. Blandin, M. Brandner: Influence of the vocal tract on voice directivity, in 23rd International Congress on Acoustics, Aachen, Germany, September 9–13, 2019, pp. 9–13. [Google Scholar]
  24. T. Halkosaari, M. Vaalgamaa, M. Karjalainen: Directivity of artificial and human speech. Journal of the Audio Engineering Society 53 (2005) 620–631. [Google Scholar]
  25. D. Cabrera, P.J. Davis, A. Connolly, Long-term horizontal vocal directivity of opera singers: Effects of singing projection and acoustic environment. Journal of Voice 25 (2011) e291–e303. [CrossRef] [PubMed] [Google Scholar]
  26. V.R. Algazi, R.O. Duda, R. Duraiswami, N.A. Gumerov, Z. Tang: Approximating the head-related transfer function using simple geometric models of the head and torso. Journal of the Acoustical Society of America 112 (2002) 2053–2064. [CrossRef] [PubMed] [Google Scholar]
  27. N.A. Gumerov, R. Duraiswami, Z. Tang: Numerical study of the influence of the torso on the HRTF, in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. II-1965–II-1968, 2002. [Google Scholar]
  28. R. Blandin, J. Geng, P. Birkholz: Experimental investigation of speech directivity mechanisms, in 16th French Acoustics Congress, Marseille, France, April, 2022, pp. 11–15. [Google Scholar]
  29. P. Häsner, A. Prescher, P. Birkholz: Effect of wavy trachea walls on the oscillation onset pressure of silicone vocal folds. Journal of the Acoustical Society of America 149 (2021) 466–475. [CrossRef] [PubMed] [Google Scholar]
  30. P. Birkholz, S. Stone, P. Häsner, R. Blandin, M. Fleischer: Printable 3D vocal tract shapes from MRI data and their acoustic and aerodynamic properties. Scientific Data 7 (2020) 1–16. [CrossRef] [PubMed] [Google Scholar]
  31. P. Birkholz, E. Venus: Considering lip geometry in one dimensional tube models of the vocal tract, in Proceedings of the 11th International Seminar Speech on Production, Tianjin, China, October 16–19, 2018. [Google Scholar]
  32. Blender Online Community: Blender – a 3D modelling and rendering package, Stichting Blender Foundation, Amsterdam, Netherlands, 2018. Available at: [Google Scholar]
  33. M. Long, Architectural Acoustics, Elsevier, 2014. [Google Scholar]
  34. R. Blandin, M. Arnela, S. Félix, J.B. Doc, P. Birkholz: Efficient 3D acoustic simulation of the vocal tract by combining the multimodal method and finite elements. IEEE Access 10 (2022) 69922–69938. [CrossRef] [Google Scholar]
  35. M. Brandner, M. Frank, A. Sontacchi: Horizontal and vertical voice directivity characteristics of sung vowels in classical singing. Acoustics 4 (2022) 849–866. [CrossRef] [Google Scholar]
  36. K. Motoki: Three-dimensional acoustic field in vocal-tract. Acoustical Science and Technology 23 (2002) 207–212. [CrossRef] [Google Scholar]
  37. R. Blandin, J. Geng, P. Birkholz: Investigation of the influence of the torso, lips and vocal tract configuration on speech directivity using measurements from a custom head and torso simulator [Data set], 2023. Available at: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.