Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 58
Number of page(s) 6
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2023055
Published online 14 November 2023
  1. N.M. Krylov, N.N. Bogoliubov: Introduction to non-linear mechanics, No. 11, Princeton University Press. 1950. [Google Scholar]
  2. R. Seydel, Practical bifurcation and stability analysis, Vol. 5, Springer Science & Business Media. 2009. [Google Scholar]
  3. C. Grebogi, E. Ott, J.A. Yorke: Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics, Science 238, 4827 (1987) 632–638. [CrossRef] [PubMed] [Google Scholar]
  4. T. Tachibana, K. Takahashi: Sounding mechanism of a cylindrical pipe fitted with a clarinet mouthpiece, Progress of Theoretical Physics 104, 2 (2000) 265–288. [CrossRef] [Google Scholar]
  5. B. Bergeot, C. Vergez: Analytical expressions of the dynamic hopf bifurcation points of a simplified stochastic model of a reed musical instrument, Nonlinear Dynamics 107 (2022) 3291–3312. [CrossRef] [Google Scholar]
  6. A. Chaigne, J. Kergomard: Acoustique des instruments de musique (Acoustics of musical instruments), Belin, 2008. [Google Scholar]
  7. T. Colinot: Numerical simulation of woodwind dynamics: investigating nonlinear sound production behavior in saxophone-like instruments, PhD thesis, Aix-Marseille Université, 2020. [Google Scholar]
  8. D. Dessi, F. Mastroddi, L. Morino: A fifth-order multiple-scale solution for HOPF bifurcations: Computers & Structures 82, 31–32 (2004) 2723–2731. [CrossRef] [Google Scholar]
  9. J. Guckenheimer, Y.A. Kuznetsov: Bautin bifurcation, Scholarpedia 2, 5 (2007) 1853. [CrossRef] [Google Scholar]
  10. Y.A. Kuznetsov: Andronov-HOPF bifurcation, Scholarpedia 1, 10 (2006) 1858. [CrossRef] [Google Scholar]
  11. Y.A. Kuznetsov: Saddle-node bifurcation, Scholarpedia 1, 10 (2006) 1859. [CrossRef] [Google Scholar]
  12. W. Beyn, A. Champneys, E. Doedel, W. Govarets, U. Kuznetsov, A. Yu, B. Sandstede: Numerical continuation, and computation of normal forms, in: Handbook of Dynamical Systems, Vol. 2, Elsevier. 2002. [Google Scholar]
  13. J.C. Butcher: Numerical methods for ordinary differential equations, John Wiley & Sons. 2016. [CrossRef] [Google Scholar]
  14. J.C. Butcher: A history of Runge-Kutta methods, Applied Numerical Mathematics 20, 3 (1996) 247–260. [CrossRef] [Google Scholar]
  15. L.F. Shampine, M.W. Reichelt: The matlab ode suite, SIAM Journal on Scientific Computing 18, 1 (1997) 1–22. [CrossRef] [Google Scholar]
  16. T. Colinot, C. Vergez: Dynamical system audio demonstrator [Code]. GitHub. 2023, https://github.com/Tom-Colinot/Dynamical-System-Audio-Demonstrator/. [Google Scholar]
  17. Tom-Colinot: Tom-Colinot/dynamical-system-audio-demonstrator: resubmission release (v1.1.0beta). Zenodo, 2023. https://doi.org/10.5281/zenodo.8413627. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.