Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 57
Number of page(s) 15
Section Ultrasonics
DOI https://doi.org/10.1051/aacus/2023054
Published online 10 November 2023
  1. L. Rayleigh: On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society 1 (2016) 4–11. [Google Scholar]
  2. H. Lamb: On waves in an elastic plate. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences 93, 648 (1917) 114–128. [Google Scholar]
  3. R. Stoneley: Elastic waves at the surface of separation of two solids. Proceedings of the Royal Society A: Mathematical Physical Engineering Sciences 106, 738 (1924) 416–428. [Google Scholar]
  4. J.L. Rose: Ultrasounic waves in solid media. Cambridge University Press, 1999. [Google Scholar]
  5. C.T. Ng, M. Veidt: A lamb-wave-based technique for damage detection in composite laminates. Smart Materials and Structures 18, 7 (2009) 074006. [CrossRef] [Google Scholar]
  6. G. Wang: Beam damage uncertainty quantification using guided Lamb wave responses. Journal of intelligent material systems and structures 29, 3 (2018) 323–334. [CrossRef] [Google Scholar]
  7. M.V. Golub, A.N. Shpak, I. Mueller, S.I. Fomenko, C.-P. Fritzen: Lamb wave scattering analysis for interface damage detection between a surface-mounted block and elastic plate. Sensors 21, 3 (2021) 860. [CrossRef] [PubMed] [Google Scholar]
  8. I. Kaur, P. Lata: Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion. International Journal of Mechanical and Materials Engineering 14, 1 (2019) 12. [CrossRef] [Google Scholar]
  9. I. Kaur, K. Singh: Rayleigh wave propagation in transversely isotropic magneto-thermoelastic diffusive medium with memory-dependent derivatives. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering (2023) 1–12. https://doi.org/10.1007/s40997-023-00616-2. [Google Scholar]
  10. I. Kaur, P. Lata: Stoneley wave propagation in transversely isotropic thermoelastic medium with two temperature and rotation. GEM – International Journal on Geomathematics 11, 1 (2020) 1–17. https://doi.org/10.1007/s13137-020-0140-8. [CrossRef] [Google Scholar]
  11. N. Toyama, J. Takatsubo: Lamb wave method for quick inspection of impact-induced delamination in composite laminates. Composites Science & Technology 64, 9 (2004) 1293–1300. [CrossRef] [Google Scholar]
  12. A. Mokhtari, A. Ohadi, H. Amindavar: Reconstructing the damage shape in aluminum plate using guided Lamb wave and polygon reconstruction technique in tomography. Modares Mechanical Engineering 15, 4 (2015) 239–246. [Google Scholar]
  13. R.K. Singh, C. Ramadas, P. Balachandra Shetty, K.G. Satyanarayana: Identification of delamination interface in composite laminates using scattering characteristics of lamb wave: Numerical and experimental studies. Smart Material Structures 26, 4 (2017) 045017. [CrossRef] [Google Scholar]
  14. B. Zima: Damage detection in plates based on Lamb wavefront shape reconstruction. Measurement 177, 2 (2021) 109206. [CrossRef] [Google Scholar]
  15. F. Hervin, L. Maio, P. Fromme: Guided wave scattering at a delamination in a quasi-isotropic composite laminate: experiment and simulation. Composite Structures 1 (2021) 114406. [CrossRef] [Google Scholar]
  16. H. Cui, J. Trevelyan, S. Johnstone: Stoneley waves in three-layered cylindrical solid media. Journal of the Acoustical Society of America 130, 1 (2011) EL44–EL49. [CrossRef] [PubMed] [Google Scholar]
  17. M.D. Gardner, J.L. Rose, K.L. Koudela, C.A. Moose: Inspectability of interfaces between composite and metallic layers using ultrasonic interface waves. Journal of the Acoustical Society of America 133, 5 (2013) 3545. [CrossRef] [Google Scholar]
  18. W. Ou, Z. Wang, Q. Ning, F. Xu, Y. Yu: Numerical simulation of borehole Stoneley wave reflection by a fracture based on variable grid spacing method. Acta Geophysica 67, 6 (2019) 1–11. [CrossRef] [Google Scholar]
  19. S.A. Sahu, S. Kumari, K.K. Pankaj: Modelling of Stoneley wave transference at the frictional interface between ice and rock medium. Archive of Applied Mechanics 91 (2021) 2461–2480. [Google Scholar]
  20. V.T.N. Anh, L.T. Thang, P.C. Vinh, T.T. Tuan: Stoneley waves with spring contact and evaluation of the quality of imperfect bonds. Zeitschrift für angewandte Mathematik und Physik 71, 1 (2020) 36. [CrossRef] [Google Scholar]
  21. H. Phan, T.Q. Bui, H.T.-L. Nguyen, C.V. Phan: Computation of interface wave motions by reciprocity considerations. Wave Motion 79 (2018) 10–22. [CrossRef] [Google Scholar]
  22. O.A. Godin: Calculation of amplitudes of acoustic normal modes from the reciprocity principle. Journal of the Acoustical Society of America 117, 4 (2005) 2548–2548. [CrossRef] [Google Scholar]
  23. H. Phan, Y. Cho, J.D. Achenbach: Validity of the reciprocity approach for determination of surface wave motion. Ultrasonics 53, 3 (2013) 665–671. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.