Open Access
Issue |
Acta Acust.
Volume 8, 2024
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 17 | |
Section | Hearing, Audiology and Psychoacoustics | |
DOI | https://doi.org/10.1051/aacus/2024009 | |
Published online | 01 April 2024 |
- J. Cubick, T. Dau: Validation of a virtual sound environment system for testing hearing aids. Acta Acustica united with Acustica 102, 3 (2016) 547–557. https://doi.org/10.3813/aaa.918972. [CrossRef] [Google Scholar]
- G. Grimm, J. Luberadzka, V. Hohmann: Virtual acoustic environments for comprehensive evaluation of model-based hearing devices. International Journal of Audiology 57, sup3 (2016) S112–S117. https://doi.org/10.1080/14992027.2016.1247501. [Google Scholar]
- B. Kapralos, M.R. Jenkin, E. Milios: Virtual audio systems. Presence: Teleoperators and Virtual Environments 17, 6 (2008) 527–549. https://doi.org/10.1162/pres.17.6.527. [CrossRef] [Google Scholar]
- V. Pulkki: Multichannel sound reproduction, in D. Havelock, S. Kuwano, M. Vorlaender (Eds.), Handbook of signal processing in acoustics, Springer, New York, NY, 2008, pp. 747–760. ISBN 978-0-387-30441-0. https://doi.org/10.1007/978-0-387-30441-0_38. [CrossRef] [Google Scholar]
- S. Bertet, J. Daniel, E. Parizet, O. Warusfel: Investigation on localisation accuracy for first and higher order ambisonics reproduced sound sources. Acta Acustica united with Acustica 99, 4 (2013) 642–657. https://doi.org/10.3813/aaa.918643. [CrossRef] [Google Scholar]
- H. Wierstorf, A. Raake, S. Spors: Assessing localization accuracy in sound field synthesis. Journal of the Acoustical Society of America 141, 2 (2017) 1111–1119. https://doi.org/10.1121/1.4976061. [CrossRef] [PubMed] [Google Scholar]
- T. Huisman, A. Ahrens, E. MacDonald: Ambisonics sound source localization with varying amount of visual information in virtual reality. Frontiers in Virtual Reality 2 (2021) 722321. https://doi.org/10.3389/frvir.2021.722321. [CrossRef] [Google Scholar]
- C. Oreinos, J.M. Buchholz: Objective analysis of ambisonics for hearing aid applications: effect of listeners head, room reverberation, and directional microphones. Journal of the Acoustical Society of America 137, 6 (2015) 3447–3465. https://doi.org/10.1121/1.4919330. [CrossRef] [PubMed] [Google Scholar]
- G. Grimm, S. Ewert, V. Hohmann: Evaluation of spatial audio reproduction schemes for application in hearing aid research. Acta Acustica united with Acustica 101, 4 (2015) 842–854. https://doi.org/10.3813/aaa.918878. [CrossRef] [Google Scholar]
- S. Bertet, J. Daniel, L. Gros, E. Parizet, O. Warusfel: Investigation of the perceived spatial resolution of higher order ambisonics sound fields: a subjective evaluation involving virtual and real 3D microphones, in Audio Engineering Society Conference: 30th International Conference: Intelligent Audio Environments, Saariselkä, Finland, March 15–17, 2007, Audio Engineering Society, pp. 217–225. [Google Scholar]
- S. Favrot, M. Marschall, J. Käsbach, J. Buchholz, T. Weller: Mixed-order ambisonics recording and playback for improving horizontal directionality, in 131st Audio Engineering Society Convention, New York, USA, October 20–23, 2011, Audio Engineering Society, pp. 641–647. [Google Scholar]
- P.N. Samarasinghe, M.A. Poletti, S.M.A. Salehin, T.D. Abhayapala, F.M. Fazi: 3D soundfield reproduction using higher order loudspeakers, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May, 2013, IEEE, pp. 306–310. https://doi.org/10.1109/ICASSP.2013.6637658. [CrossRef] [Google Scholar]
- V. Pulkki: Virtual sound source positioning using vector base amplitude panning. Journal of the Audio Engineering Society 45, 6 (1997) 456–466. [Google Scholar]
- J. Daniel: Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia. PhD thesis, Université Pierre et Marie Curie (Paris VI), Paris, 2001. [Google Scholar]
- A.W. Mills: On the minimum audible angle. Journal of the Acoustical Society of America 30, 4 (1958) 237–246. https://doi.org/10.1121/1.1909553. [CrossRef] [Google Scholar]
- S. Favrot, J.M. Buchholz: LoRA: A loudspeaker-based room auralization system. Acta Acustica united with Acustica 96, 2 (2010) 364–375. https://doi.org/10.3813/aaa.918285. [CrossRef] [Google Scholar]
- B.U. Seeber, S. Kerber, E.R. Hafter: A system to simulate and reproduce audio-visual environments for spatial hearing research. Hearing Research 260 (2010) 1–10. https://doi.org/10.1016/j.heares.2009.11.004. [CrossRef] [PubMed] [Google Scholar]
- S. Spors, H. Wierstorf, A. Raake, F. Melchior, M. Frank, F. Zotter: Spatial sound with loudspeakers and its perception: A review of the current state. Proceedings of the IEEE 101, 9 (2013) 1920–1938. https://doi.org/10.1109/jproc.2013.2264784. [CrossRef] [Google Scholar]
- F. Zotter, M. Frank: All-round ambisonic panning and decoding. Journal of the Audio Engineering Society 60, 10 (2012) 807–820. [Google Scholar]
- A.J. Heller, E.M. Benjamin, R. Lee: A toolkit for the design of ambisonic decoders, in Linux Audio Conference, CCRMA, Stanford University, California, April 12–15, 2012. Available at http://www.academia.edu/download/30883409/18.pdf. [Google Scholar]
- A.J. Heller, E.M. Benjamin: The Ambisonic Decoder Toolbox: Extensions for partial-coverage loudspeaker arrays, Linux Audio Conference, ZKM, Karlsruhe, Germany, May 1–4, 2014. [Google Scholar]
- C. Böhm, D. Ackermann, S. Weinzierl: A multi-channel anechoic orchestra recording of Beethoven’s Symphony No. 8 Op. 93. Journal of the Audio Engineering Society 68, 12 (2021) 977–984. https://doi.org/10.17743/jaes.2020.0056. [CrossRef] [Google Scholar]
- J. Grimm, W. Grimm: Schneewittchen. Audiobook, spoken by Johannes Ackner, 1812. Available at https://www.vorleser.net/grimm_schneewittchen/hoerbuch.html (accessed 22 June 2018). [Google Scholar]
- M.M.E. Hendrikse, G. Llorach, V. Hohmann, G. Grimm: Movement and gaze behavior in virtual audiovisual listening environments resembling everyday life. Trends in Hearing 23 (2019) 233121651987236. https://doi.org/10.1177/2331216519872362. [CrossRef] [Google Scholar]
- M. Gerken, V. Hohmann, G. Grimm: Comparison of 2D and 3D multichannel audio rendering methods for hearing research applications using technical and perceptual measures – impulse responses and scene recordings. Zenodo, 2023. https://doi.org/10.5281/zenodo.10037482. [Google Scholar]
- D. Rocchesso, J. Smith: Circulant and elliptic feedback delay networks for artificial reverberation. IEEE Transactions on Speech and Audio Processing 5, 1 (1997) 51–63. https://doi.org/10.1109/89.554269. [CrossRef] [Google Scholar]
- T. Roosendaal: The Official Blender Game Kit: interactive 3D for artist, No Starch Press, San Francisco, 2003. [Google Scholar]
- T. Roosendaal: Blender, version 2.79b, 2018. Available at https://download.blender.org/release/Blender2.79/. [Google Scholar]
- J. Heeren, G. Grimm, S. Ewert, V. Hohmann: Video screens for hearing research: transmittance and reflectance of professional and other fabrics. ArXiv preprint, 2023. Available at https://doi.org/10.48550/ARXIV.2309.11430. [Google Scholar]
- G. Grimm, J. Luberadzka, V. Hohmann: A toolbox for rendering virtual acoustic environments in the context of audiology. Acta Acustica united with Acustica 105, 3 (2019) 566–578. https://doi.org/10.3813/aaa.919337. [CrossRef] [Google Scholar]
- G. Grimm, T. Herzke: TASCAR version 0.225.1, 2022. Available at https://github.com/gisogrimm/tascar. [Google Scholar]
- MATLAB: Version 9.7.0 (R2019b). The MathWorks Inc., Natick, Massachusetts, 2019. [Google Scholar]
- M.A. Gerzon: General metatheory of auditory localisation. Audio Engineering Society Convention 92, Audio Engineering Society, 1992. [Google Scholar]
- A.J. Heller, R. Lee, E.M. Benjamin: Is my decoder ambisonic? Audio Engineering Society – 125th Audio Engineering Society Convention 1 (2008) 719–740. [Google Scholar]
- I. Holube, S. Fredelake, M. Vlaming, B. Kollmeier: Development and analysis of an international speech test signal (ISTS). International Journal of Audiology 49, 12 (2010) 891–903. https://doi.org/10.3109/14992027.2010.506889. [CrossRef] [PubMed] [Google Scholar]
- J.C. Makous, J.C. Middlebrooks: Two-dimensional sound localization by human listeners. Journal of the Acoustical Society of America 87, 5 (1990) 2188–2200. https://doi.org/10.1121/1.399186. [CrossRef] [PubMed] [Google Scholar]
- M. Gerken, G. Grimm, V. Hohmann: Evaluation of real-time implementation of 3D multichannel audio rendering methods, in DAGA 2020 – 46 Jahrestagung für Akustik, Hannover, 16–19 March, 2020. [Google Scholar]
- D.R. Perrott, S. Pacheco: Minimum audible angle thresholds for broadband noise as a function of the delay between the onset of the lead and lag signals. Journal of the Acoustical Society of America 85, 6 (1989) 2669–2672. https://doi.org/10.1121/1.397764. [CrossRef] [PubMed] [Google Scholar]
- D.R. Perrott, K. Saberi: Minimum audible angle thresholds for sources varying in both elevation and azimuth. Journal of the Acoustical Society of America 87, 4 (1990) 1728–1731. https://doi.org/10.1121/1.399421. [CrossRef] [PubMed] [Google Scholar]
- A. Lindau, V. Erbes, S. Lepa, H.-J. Maempel, F. Brinkman, S. Weinzierl: A spatial audio quality inventory (SAQI). Acta Acustica united with Acustica 100, 5 (2014) 984–994. https://doi.org/10.3813/aaa.918778. [CrossRef] [Google Scholar]
- S.K. Roffler, R.A. Butler: Factors that influence the localization of sound in the vertical plane. Journal of the Acoustical Society of America 43, 6 (1968) 1255–1259. https://doi.org/10.1121/1.1910976. [CrossRef] [PubMed] [Google Scholar]
- S. Fargeot, O. Derrien, G. Parseihian, M. Aramaki, R. Kronland-Martinet: Subjective evaluation of spatial distorsions induced by a sound source separation process, in EAA Spatial Audio Signal Processing Symposium, Paris, France, 6–7 September, 2019. https://doi.org/10.25836/SASP.2019.15. [Google Scholar]
- G. Llorach, M.M.E. Hendrikse, G. Grimm, V. Hohmann: Comparison of a head-mounted display and a curved screen in a multi-talker audiovisual listening task. ArXiv preprint, 2020. https://doi.org/10.48550/ARXIV.2004.01451. [Google Scholar]
- R.A. Butler, R.A. Humanski: Localization of sound in the vertical plane with and without high-frequency spectral cues. Perception & Psychophysics 51, 2 (1992) 182–186. https://doi.org/10.3758/bf03212242. [CrossRef] [PubMed] [Google Scholar]
- D.R. Begault, E.M. Wenzel, M.R. Anderson: Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. Journal of the Audio Engineering Society 49, 10 (2001) 904–916. [Google Scholar]
- F. Winter, H. Wierstorf, S. Spors: Improvement of the reporting method for closed-loop human localization experiments. in 142nd Audio Engineering Society Convention, Berlin, Germany, May 20–23, 2017. [Google Scholar]
- R.Y. Litovsky: Developmental changes in the precedence effect: Estimates of minimum audible angle. Journal of the Acoustical Society of America 102, 3 (1997) 1739–1745. https://doi.org/10.1121/1.420106. [CrossRef] [PubMed] [Google Scholar]
- A. Ahrens, M. Marschall, T. Dau: Measuring and modeling speech intelligibility in real and loudspeaker-based virtual sound environments. Hearing Research 377 (2019) 307–317. https://doi.org/10.1016/j.heares.2019.02.003. [CrossRef] [PubMed] [Google Scholar]
- M. Dietz, S.D. Ewert, V. Hohmann: Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication 53 (2011) 592–605. https://doi.org/10.1016/j.specom.2010.05.006. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.