Open Access
Acta Acust.
Volume 8, 2024
Article Number 11
Number of page(s) 18
Section Building Acoustics
Published online 26 February 2024
  1. A. Chiniforush, M.M. Alamdari, U. Dackermann, H. Valipour, A. Akbarnezhad: Vibration behaviour of steel-timber composite floors, part (1): experimental & numerical investigation. Journal of Constructional Steel Research 161 (2019) 244–257. [CrossRef] [Google Scholar]
  2. A. Hassanieh, A.A. Chiniforush, H.R. Valipour, M.A. Bradford: Vibration behaviour of steel-timber composite floors, part (2): evaluation of human-induced vibrations. Journal of Constructional Steel Research 158 (2019) 156–170. [CrossRef] [Google Scholar]
  3. M. Fujita, J. Sakai, H. Oda, M. Iwata: Building system for a composite steel-timber structure. Steel Construction 7 (2014) 183–187. [CrossRef] [Google Scholar]
  4. A.T. Balasbaneh, W. Sher, D. Yeoh, K. Koushfar: LCA & LCC analysis of hybrid glued laminated timber–concrete composite floor slab system. Journal of Building Engineering 49 (2022) 104005. [CrossRef] [Google Scholar]
  5. W. Zhu, H. Yang, W. Liu, B. Shi, Z. Ling, H. Tao: Experimental investigation on innovative connections for timber–concrete composite systems. Construction and Building Materials 207 (2019) 345–356. [CrossRef] [Google Scholar]
  6. A. Hassanieh, H. Valipour, M. Bradford: Experimental and numerical study of steel-timber composite (STC) beams. Journal of Constructional Steel Research 122 (2016) 367–378. [CrossRef] [Google Scholar]
  7. J. Negreira, A. Trollé, K. Jarnerö, L.-G. Sjökvist, D. Bard: Psycho-vibratory evaluation of timber floors – towards the determination of design indicators of vibration acceptability and vibration annoyance. Journal of Sound and Vibration 340 (2015) 383–408. [CrossRef] [Google Scholar]
  8. J. Weckendorf, G. Hafeez, G. Doudak, I. Smith: Floor vibration serviceability problems in wood light-frame buildings. Journal of Performance of Constructed Facilities 28 (2014) A4014003. [CrossRef] [Google Scholar]
  9. A. Pavic: Results of IStructE 2015 survey of practitioners on vibration serviceability. In: Proceedings of the SECED 2019 Conference: Earthquake Risk and Engineering towards a Resilient Word, London, UK, 9–10 September, 2019. [Google Scholar]
  10. O.A. Hassan, F. Öberg, E. Gezelius: Cross-laminated timber flooring and concrete slab flooring: a comparative study of structural design, economic and environmental consequences. Journal of Building Engineering 26 (2019) 100881. [CrossRef] [Google Scholar]
  11. N. Perković, V. Rajčić, J. Barbalić: Analytical and numerical verification of vibration design in timber concrete composite floors, Forests 12 (2021) 707. [CrossRef] [Google Scholar]
  12. N.-G. Vardaxis, D. Bard Hagberg, J. Dahlström: Evaluating laboratory measurements for sound insulation of cross-laminated timber (CLT) floors: configurations in lightweight buildings. Applied Sciences 12 (2022) 7642. [CrossRef] [Google Scholar]
  13. F.G. Branco, L. Godinho: On the use of lightweight mortars for the minimization of impact sound transmission. Construction and Building Materials 45 (2013) 184–191. [CrossRef] [Google Scholar]
  14. L. Godinho, R. Masgalos, A. Pereira, F. Branco: On the use of a small-sized acoustic chamber for the analysis of impact sound reduction by floor coverings. Noise Control Engineering Journal 58 (2010) 658–668. [CrossRef] [Google Scholar]
  15. Technical Committee ISO/TC 98: ISO 10137 – Bases for design of structures – Serviceability of buildings and walkways against vibrations, International Organization for Standardization, Geneva, Switzerland, 2007. [Google Scholar]
  16. B. Szabó, I. Babuška: Finite Element Analysis: Method, Verification and Validation. John Wiley & Sons, 2021. [CrossRef] [Google Scholar]
  17. J.E. Mottershead, M. Link, M.I. Friswell, C. Schedlinski: Model Updating. In: R. Allemang, P. Avitabile, Eds. Handbook of experimental structural dynamics. Springer, New York, NY, 2021, pp. 1–53. [Google Scholar]
  18. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas: Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104 (2015) 148–175. [Google Scholar]
  19. S. Tao, A. Van Beek, D.W. Apley, W. Chen: Multi-model bayesian optimization for simulation-based design. Journal of Mechanical Design 143 (2021) 111701. [Google Scholar]
  20. D. Owolabi, C. Loss, J. Zhou: Vibration properties and serviceability performance of a modular cross-laminated timber-steel composite floor system. Journal of Structural Engineering 149 (2023) 04023171. [CrossRef] [Google Scholar]
  21. B. Chocholaty, N.B. Roozen, M. Maeder, S. Marburg: Vibroacoustic response of steel–timber composite elements. Engineering Structures 271 (2022) 114911. [CrossRef] [Google Scholar]
  22. F. Nogueira: Bayesian Optimization: Open source constrained global optimization tool for Python, 2014. Available at [Google Scholar]
  23. Technical Committee ISO/TC 43: DIN EN ISO 10140–5 – Acoustics – Laboratory measurement of sound insulation of building elements – Part 5: Requirements for test facilities and equipment, European Committee for Standardization, Brussels, Belgium, 2021. [Google Scholar]
  24. Pollmeier Massivholz GmbH & Co.KG: Leistungserklärung einer Platte in Baubuche.2018. Available at (accessed: 2022-01-19). [Google Scholar]
  25. A. Andrej: Schneider: Bautabellen für Ingenieure, vol. 21. Bundesanzeiger Verlag, 2014. [Google Scholar]
  26. ANSYS, Inc.: Ansys engineering simulation software, 2019. Available at [Google Scholar]
  27. P. Langer, M. Maeder, C. Guist, M. Krause, S. Marburg: More than six elements per wavelength: The practical use of structural finite element models and their accuracy in comparison with experimental results. Journal of Computational Acoustics 25 (2017) 1750025. [CrossRef] [Google Scholar]
  28. L. Cremer, M. Heckl: Abstrahlung von Körperschall. In: L. Cremer, M. Heckl, Körperschall. Springer, 1996, pp. 459–545. [CrossRef] [Google Scholar]
  29. D.J. Ewins: Modal testing – theory, practice and application. John Wiley & Sons, New York, 2009. [Google Scholar]
  30. S. Ereiz, I. Duvnjak, J.F. Jiménez-Alonso: Review of finite element model updating methods for structural applications. Structures 41 (2022) 684–723. [CrossRef] [Google Scholar]
  31. R.J. Allemang: The modal assurance criterion – twenty years of use and abuse. Sound and vibration 37 (2003) 14–23. [Google Scholar]
  32. O. Cuate, O. Schütze: Pareto explorer for finding the knee for many objective optimization problems. Mathematics 8 (2020) 1651. [CrossRef] [Google Scholar]
  33. K. Christodoulou, E. Ntotsios, C. Papadimitriou, P. Panetsos: Structural model updating and prediction variability using pareto optimal models. Computer Methods in Applied Mechanics and Engineering 198 (2008) 138–149. [CrossRef] [Google Scholar]
  34. E. Brochu, V.M. Cora, N. De Freitas: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. 2010. Preprint available at [Google Scholar]
  35. C.Q. Howard, B.S. Cazzolato: Acoustic Analyses using MATLAB® and ANSYS®. CRC Press, 2014. [Google Scholar]
  36. Technical Committee CEN/TC 250: DIN EN 1995 1–1 – Eurocode 5: Design of timber structures, Part 1–1: General – Common rules and rules for buildings, European Committee for Standardization, Brussels, Belgium, 2010. [Google Scholar]
  37. C. Geweth, S. Baydoun, F. Saati, K. Sepahvand, S. Marburg: Effect of boundary conditions in the experimental determination of structural damping. Mechanical Systems and Signal Processing 146 (2021) 107052. [CrossRef] [Google Scholar]
  38. P. Wang, C. Van Hoorickx, G. Lombaert, E. Reynders: Numerical prediction and experimental validation of impact sound radiation by timber joist floors. Applied Acoustics 162 (2020) 107182. [CrossRef] [Google Scholar]
  39. N. Cheraghi-Shirazi, K. Crews, S. Malek: Review of vibration assessment methods for steel-timber composite floors. Buildings 12 (2022) 2061. [CrossRef] [Google Scholar]
  40. T. Murray, D. Allen, E. Ungar, D. Davis: Vibrations of steel-framed structural systems due to human activity: AISC design guide 11. American Institute of Steel Construction, USA, 2016. [Google Scholar]
  41. M.R. Willford, P. Young: A design guide for footfall induced vibration of structures. Concrete Society for the Concrete Centre London, London, UK, 2006. [Google Scholar]
  42. Committee GME/21: BS 6472–1 – Guide to evaluation of human exposure to vibration in buildings – part 1: vibration sources other than blasting, 2008. [Google Scholar]
  43. J. Brunskog, P. Hammer: The interaction between the ISO tapping machine and lightweight floors. Acta Acustica united with Acustica 89 (2003) 296–308. [Google Scholar]
  44. J. Lietzén, J. Miettinen, M. Kylliäinen, S. Pajunen: Impact force excitation generated by an ISO tapping machine on wooden floors. Applied Acoustics 175 (2021) 107821. [CrossRef] [Google Scholar]
  45. D. Fritze, S. Marburg, H.-J. Hardtke: Estimation of radiated sound power: a case study on common approximation methods. Acta Acustica united with Acustica 95 (2009) 833–842. [CrossRef] [Google Scholar]
  46. F. Fahy: Sound and structural vibration: radiation, transmission and response, Academic Press, London and Orlando, FL, 1985. [Google Scholar]
  47. Technical Committee CEN/TC 211: DIN EN ISO 3741 – Acoustics – determination of sound power levels and sound energy levels of noise sources using sound pressure – Precision methods for reverberation test rooms, 2011. [Google Scholar]
  48. Subcommittee NA 001-02-03-03 UA: DIN 18041 – Acoustic quality in rooms – Specifications and instructions for the room acoustic design, 2016. [Google Scholar]
  49. Technical Committee CEN/TC 126: DIN EN ISO 12354-2 – Building acoustics – estimation of acoustic performance of buildings from the performance of elements – part 2: impact sound insulation between rooms, 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.