Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 10
Number of page(s) 6
Section Acoustic Materials and Metamaterials
DOI https://doi.org/10.1051/aacus/2023065
Published online 13 February 2024
  1. J.W.S.B. Rayleigh: The theory of sound, Vol 2. Macmillan, 1896. [Google Scholar]
  2. G. Stewart: Influence of a branch line upon acoustic transmission of a conduit. Physical Review 26 (1925) 688–690. [CrossRef] [Google Scholar]
  3. J. Anderson: The effect of an air flow on a single side branch Helmholtz resonator in a circular duct. Journal of Sound and Vibration 52 (1977) 423–431. [CrossRef] [Google Scholar]
  4. D. Ronneberger: The dynamics of shearing flow over a cavity – A visual study related to the acoustic impedance of small orifices. Journal of Sound and Vibration 71 (1980) 565–581. [CrossRef] [Google Scholar]
  5. M.L. Munjal: Acoustics of ducts and mufflers with application to exhaust and ventilation system design. John Wiley & Sons, 1987. [Google Scholar]
  6. A. Santillán, S.I. Bozhevolnyi: Acoustic transparency and slow sound using detuned acoustic resonators, Physical Review B 84 (2011) 064304. [CrossRef] [Google Scholar]
  7. A. Merkel, G. Theocharis, O. Richoux, V. Romero-García, V. Pagneux: Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters 107 (2015) 244102. [CrossRef] [Google Scholar]
  8. Y. Cheng, Y. Jin, Y. Zhou, T. Hao, Y. Li: Distinction of acoustically induced transparency and Autler-Townes splitting by Helmholtz resonators. Physical Review Applied 12 (2019) 044025. [CrossRef] [Google Scholar]
  9. R. Porter, K. Pham, A. Maurel: Modeling Autler-Townes splitting and acoustically induced transparency in a waveguide loaded with resonant channels. Physical Review B 105 (2022) 134301. [CrossRef] [Google Scholar]
  10. S.H. Autler, C.H. Townes: Stark effect in rapidly varying fields. Physical Review 100 (1955) 703721. [CrossRef] [Google Scholar]
  11. T.Y. Abi-Salloum: Electromagnetically induced transparency and Autler-Townes splitting: Two similar but distinct phenomena in two categories of three-level atomic systems, Physical Review A 81, (2010) 053836. [CrossRef] [Google Scholar]
  12. H. Nguyen, Q. Wu, X. Xu, H. Chen, S. Tracy, G. Huang: Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators. Applied Physics Letters 117 (2020) 134103. [CrossRef] [Google Scholar]
  13. Y.-X. Gao, Z.-W. Li, B. Liang, J. Yang, J.-C. Cheng: Improving sound absorption via coupling modulation of resonance energy leakage and loss in ventilated metamaterials. Applied Physics Letters 120 (2022) 261701. [CrossRef] [Google Scholar]
  14. L. Chesnel, V. Pagneux: Simple examples of perfectly invisible and trapped modes in waveguides. Quarterly Journal of Mechanics and Applied Mathematics 71 (2018) 297–315. [CrossRef] [Google Scholar]
  15. V. Dubos, J. Kergomard, A. Khettabi, J.-P. Dalmont, D. Keefe, C. Nederveen: Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85 (1999) 153–169. [Google Scholar]
  16. V. Pagneux, Trapped modes and edge resonances in acoustics and elasticity. In: R.V. Craster, J. Kaplunov, Eds. Dynamic localization phenomena in elasticity, acoustics and electromagnetism. CISM International Centre for Mechanical Sciences, vol. 547, Springer, Vienna, 2013, pp. 181–223. [CrossRef] [Google Scholar]
  17. Y. Aurégan, M. Leroux: Failures in the discrete models for flow duct with perforations: an experimental investigation. Journal of Sound and Vibration 265 (2003) 109–121. [CrossRef] [Google Scholar]
  18. P. Testud, Y. Aurégan, P. Moussou, A. Hirschberg: The whistling potentiality of an orifice in a confined flow using an energetic criterion. Journal of Sound and Vibration 325 (2009) 769–780. [CrossRef] [Google Scholar]
  19. M. Berggren, A. Bernland, D. Noreland: Acoustic boundary layers as boundary conditions. Journal of Computational Physics 371 (2018) 633–650. [CrossRef] [Google Scholar]
  20. Y. Aurégan, V. Pagneux: Pt-symmetric scattering in flow duct acoustics. Physical Review Letters 118 (2017) 174301. [CrossRef] [PubMed] [Google Scholar]
  21. C. Bourquard, A. Faure-Beaulieu, N. Noiray: Whistling of deep cavities subject to turbulent grazing flow: intermittently unstable aeroacoustic feedback. Journal of Fluid Mechanics 909 (2021) A19. [CrossRef] [Google Scholar]
  22. Y. Aurégan, R. Starobinski: Determination of acoustical energy dissipation/production potentiality from the acoustical transfer functions of a multiport. Acta Acustica united with Acustica 85 (1999) 788–792. [Google Scholar]
  23. J. Golliard, N. González-Díez, S. Belfroid, G. Nakiboğlu, A. Hirschberg: U-RANS model for the prediction of the acoustic sound power generated in a whistling corrugated pipe. In: Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, France. July 14–18 (Paper no. V004T04A040), Vol. 55683. American Society of Mechanical Engineers, 2013, pp. 1–6. [Google Scholar]
  24. J. Golliard, Y. Aurégan, T. Humbert: Experimental study of plane wave propagation in a corrugated pipe: linear regime of acoustic-flow interaction. Journal of Sound and Vibration 472 (2020) 115158. [CrossRef] [Google Scholar]
  25. M.E. D’Elia, T. Humbert, Y. Aurégan: Linear investigation of sound-flow interaction along a corrugated plate. Journal of Sound and Vibration 534 (2022) 117048. [CrossRef] [Google Scholar]
  26. R. Lacombe, S. Föller, G. Jasor, W. Polifke, Y. Aurégan, P. Moussou: Identification of aero-acoustic scattering matrices from large eddy simulation: Application to whistling orifices in duct. Journal of Sound and Vibration 332 (2013) 5059–5067. [CrossRef] [Google Scholar]
  27. Y. Aurégan, M. Farooqui, J.-P. Groby: Low frequency sound attenuation in a flow duct using a thin slow sound material. Journal of the Acoustical Society of America 139 (2016) EL149. [CrossRef] [PubMed] [Google Scholar]
  28. M. D’Elia, T. Humbert, Y. Aurégan: Effect of flow on an array of Helmholtz resonators: Is Kevlar a “magic layer”?. Journal of the Acoustical Society of America 148 (2020) 3392–3396. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.