Open Access
Acta Acust.
Volume 8, 2024
Article Number 2
Number of page(s) 8
Section Audio Signal Processing and Transducers
Published online 09 January 2024
  1. M. Park, E. Leahey, R.J. Funk: Papers and patents are becoming less disruptive over time, Nature 613, 7942 (2023) 138–144. [CrossRef] [PubMed] [Google Scholar]
  2. C. Stokel-Walker, R. Van Noorden: What ChatGPT and generative AI mean for science. Nature 614, 7947 (2023) 214–216. [CrossRef] [PubMed] [Google Scholar]
  3. M.J. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M.A. Roch, S. Gannot, C.A. Deledalle: Machine learning in acoustics: Theory and applications. The Journal of the Acoustical Society of America 146, 5 (2019) 3590–3628. [CrossRef] [PubMed] [Google Scholar]
  4. P.A. Grumiaux, S. Kitić, L. Girin, A. Guérin: A survey of sound source localization with deep learning methods. The Journal of the Acoustical Society of America 152, 1 (2022) 107–151. [CrossRef] [PubMed] [Google Scholar]
  5. R.L. Neitzel, B.J. Fligor: Risk of noise-induced hearing loss due to recreational sound: Review and recommendations. The Journal of the Acoustical Society of America 146, 5 (2019) 3911–3921. [CrossRef] [PubMed] [Google Scholar]
  6. K.E. Radziwon, A. Sheppard, R.J. Salvi: Psychophysical changes in temporal processing in chinchillas with noise-induced hearing loss: A literature review, The Journal of the Acoustical Society of America 146, 5 (2019) 3733–3742. [CrossRef] [PubMed] [Google Scholar]
  7. K. Sonstrom Malowski, L.H. Gollihugh, H. Malyuk, C.G. Le Prell: Auditory changes following firearm noise exposure, a review. The Journal of the Acoustical Society of America 151, 3 (2022) 1769–1791. [CrossRef] [PubMed] [Google Scholar]
  8. S. Gannot, E. Vincent, S. Markovich-Golan, A. Ozerov: A consolidated perspective on multimicrophone speech enhancement and source separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing 25, 4 (2017) 692–730. [CrossRef] [Google Scholar]
  9. H.C. Song, G. Byun: An overview of array invariant for source-range estimation in shallow water. The Journal of the Acoustical Society of America 151, 4 (2022) 2336–2352. [CrossRef] [PubMed] [Google Scholar]
  10. M. Cobos, F. Antonacci, A. Alexandridis, A. Mouchtaris, B. Lee: A survey of sound source localization methods in wireless acoustic sensor networks. Wireless Communications and Mobile Computing. 2017. [Google Scholar]
  11. C. Evers, H.W. Löllmann, H. Mellmann, A. Schmidt, H. Barfuss, P.A. Naylor, W. Kellermann: The LOCATA challenge: Acoustic source localization and tracking. IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020) 1620–1643. [CrossRef] [Google Scholar]
  12. S. Argentieri, P. Danes, P. Souères: A survey on sound source localization in robotics: From binaural to array processing methods. Computer Speech & Language 34, 1 (2015) 87–112. [CrossRef] [Google Scholar]
  13. M. Kaltenbacher, J. Kergomard, M. Gaborit, T. Scotti, A. Ruimy: Acta Acustica: State of art and achievements after 3 years. Acta Acustica 7 (2023) E1. [CrossRef] [EDP Sciences] [Google Scholar]
  14. G. McLachlan, P. Majdak, J. Reijniers, H. Peremans: Towards modelling active sound localisation based on Bayesian inference in a static environment. Acta Acustica 5 (2021) 45. [CrossRef] [EDP Sciences] [Google Scholar]
  15. B. Rafaely, V. Tourbabin, E. Habets, Z. Ben-Hur, H. Lee, H. Gamper, P. Samarasinghe: Spatial audio signal processing for binaural reproduction of recorded acoustic scenes-review and challenges. Acta Acustica 6 (2022) 47. [CrossRef] [EDP Sciences] [Google Scholar]
  16. M. Döllinger, Z. Zhang, S. Schoder, P. Šidlof, B. Tur, S. Kniesburges: Overview on state-of-the-art numerical modeling of the phonation process. Acta Acustica 7 (2023) 25. [CrossRef] [EDP Sciences] [Google Scholar]
  17. E. Pain: How to (seriously) read a scientific paper. Science 10 (2016). [Google Scholar]
  18. S.D. Frank: Remember everything you read: The Evelyn Wood 7 day speed reading and learning program. Crown, 2012. [Google Scholar]
  19. L. Tang, Z. Sun, B. Idnay, J.G. Nestor, A. Soroush, P.A. Elias, Y. Peng: Evaluating large language models on medical evidence summarization, npj Digital Medicine 6, 1 (2023) 158. [CrossRef] [PubMed] [Google Scholar]
  20. C.A. Gao, F.M. Howard, N.S. Markov, E.C. Dyer, S. Ramesh, Y. Luo, A.T. Pearson: Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. npj Digital Medicine 6, 1 (2023) 75. [CrossRef] [PubMed] [Google Scholar]
  21. A. Lahat, E. Shachar, B. Avidan, Z. Shatz, B.S. Glicksberg, E. Klang: Evaluating the use of large language model in identifying top research questions in gastroenterology. Scientific Reports 13, 1 (2023) 4164. [CrossRef] [PubMed] [Google Scholar]
  22. D. Duong, B.D. Solomon: Analysis of large-language model versus human performance for genetics questions. European Journal of Human Genetics (2023) 1–3. [Google Scholar]
  23. S. Syed, R. El Baff, J. Kiesel, K. Al Khatib, B. Stein, M. Potthast: News editorials: Towards summarizing long argumentative texts, in: Proceedings of the 28th International Conference on Computational Linguistics. 2020, pp. 5384–5396. [Google Scholar]
  24. T. Goyal, J.J. Li, G. Durrett: News summarization and evaluation in the era of gpt-3, 2022. arXiv preprint arXiv:2209.12356. [Google Scholar]
  25. A. dos Santos, P. de Oliveira, B. Masiero: A retrospective on multichannel speech and audio enhancement using machine and deep learning techniques, in: Proceedings of the 24th International Congress on Acoustics. 2022, pp. 173–184. [Google Scholar]
  26. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever: Improving language understanding by generative pre-training.2018. [Google Scholar]
  27. H. Alkaissi, S.I. McFarlane: Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus 15, 2 (2023) e35179. [PubMed] [Google Scholar]
  28. N.F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, P. Liang: Lost in the middle: How language models use long contexts. 2023. arXiv preprint arXiv:2307.03172. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.