Issue |
Acta Acust.
Volume 8, 2024
Topical Issue - Numerical, computational and theoretical acoustics
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/aacus/2024022 | |
Published online | 13 August 2024 |
- G. Gouesbet, B. Maheu, G. Gréhan: Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. Journal of the Optical Society of America A 5, 9 (1988) 1427–1443. [CrossRef] [Google Scholar]
- G. Gouesbet, G. Gréhan: Generalized Lorenz–Mie theories. 3rd edn., Springer, Switzerland, 2023. [CrossRef] [Google Scholar]
- P.C. Waterman: Symmetry, unitarity, and geometry in electromagnetic scattering. Physical Review D 3 (1971) 825–839. [CrossRef] [Google Scholar]
- M.I. Mishchenko, L.D. Travis, A.A. Lacis: Scattering, absorption, and emission of light by small particles, Cambridge University Press, Cambridge, UK, 2002. [Google Scholar]
- M.I. Mishchenko: Electromagnetic scattering by particles and particle groups, an introduction, Cambridge University Press, Cambridge, UK, 2014. [CrossRef] [Google Scholar]
- G. Gouesbet, J.A. Lock, G. Gréhan: Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review. Journal of Quantitative Spectroscopy and Radiative Transfer 112, 1 (2011) 1–27. [CrossRef] [Google Scholar]
- J.A. Lock, G. Gouesbet: Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams. Journal of the Optical Society of America A 11, 9 (1994) 2503–2515. [CrossRef] [Google Scholar]
- G. Gouesbet, James A. Lock: Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams. Journal of the Optical Society of America A 11, 9 (1994) 2516–2525. [CrossRef] [Google Scholar]
- K.F. Ren, G. Gouesbet, G. Gréhan: Integral localized approximation in generalized Lorenz–Mie theory. Applied Optics 37, 19 (1998) 4218–4225. [CrossRef] [PubMed] [Google Scholar]
- S. Li, J. Shi, X. Zhang: Study on acoustic radiation force of an elastic sphere in an off-axial Gaussian beam using localized approximation. The Journal of the Acoustical Society of America 151, 4 (2022) 2602–2612. [CrossRef] [PubMed] [Google Scholar]
- S. Li, X. Zhang: Three-dimensional acoustic radiation force of a eukaryotic cell arbitrarily positioned in a Gaussian beam. Nanotechnology and Precision Engineering 6, 1 (2023) 013005. [CrossRef] [Google Scholar]
- P.L. Marston: Acoustic beam scattering and excitation of sphere resonance: Bessel beam example. The Journal of the Acoustical Society of America 122, 1 (2007) 247–252. [CrossRef] [PubMed] [Google Scholar]
- P.L. Marston: Quasi-Gaussian Bessel-beam superposition: application to the scattering of focused waves by spheres. The Journal of the Acoustical Society of America 129, 4 (2011) 1773–1782. [CrossRef] [PubMed] [Google Scholar]
- G. Gouesbet: On the validity of localized approximations for Bessel beams: all N-Bessel beams are identically equal to zero. Journal of Quantitative Spectroscopy and Radiative Transfer 176 (2016) 82–86. [CrossRef] [Google Scholar]
- G. Gouesbet, J.A. Lock, L.A. Ambrosio, J.J. Wang: On the validity of localized approximation for an on-axis zeroth-order Bessel beam. Journal of Quantitative Spectroscopy and Radiative Transfer 195 (2017) 18–25. Laser-light and Interactions with Particles 2016. [CrossRef] [Google Scholar]
- L.A. Ambrosio, J. Wang, G. Gouesbet: On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces. Applied Optics 56, 19 (2017) 5377–5387. [CrossRef] [PubMed] [Google Scholar]
- A. Chafiq, L.A. Ambrosio, G. Gouesbet, A. Belafhal: On the validity of integral localized approximation for on-axis zeroth-order Mathieu beams. Journal of Quantitative Spectroscopy and Radiative Transfer 204 (2018) 27–34. [CrossRef] [Google Scholar]
- L.A. Ambrosio, L.F.M. Votto, G. Gouesbet, J. Wang: Assessing the validity of the localized approximation for discrete superpositions of Bessel beams. Journal of the Optical Society of America B 35, 11 (2018) 2690–2698. [CrossRef] [Google Scholar]
- N.L. Valdivia, L.F.M. Votto, G. Gouesbet, J. Wang, L.A. Ambrosio: Bessel-Gauss beams in the generalized Lorenz–Mie theory using three remodeling techniques. Journal of Quantitative Spectroscopy and Radiative Transfer 256 (2020) 107292. [CrossRef] [Google Scholar]
- G. Gouesbet, L.A. Ambrosio: On the validity of the use of a localized approximation for helical beams. I. Formal aspects. Journal of Quantitative Spectroscopy and Radiative Transfer 208 (2018) 12–18. [CrossRef] [Google Scholar]
- L.A. Ambrosio, G. Gouesbet: On the validity of the use of a localized approximation for helical beams. II. Numerical aspects. Journal of Quantitative Spectroscopy and Radiative Transfer 215 (2018) 41–50. [CrossRef] [Google Scholar]
- L.A. Ambrosio, G. Gouesbet: On localized approximations for Laguerre-Gauss beams focused by a lens. Journal of Quantitative Spectroscopy and Radiative Transfer 218 (2018) 100–114. [CrossRef] [Google Scholar]
- L.F.M. Votto, L.A. Ambrosio, G. Gouesbet: Evaluation of beam shape coefficients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods. Journal of Quantitative Spectroscopy and Radiative Transfer 239 (2019) 106618. [CrossRef] [Google Scholar]
- L.A. Ambrosio, G. Gouesbet: Finite series approach for the calculation of beam shape coefficients in ultrasonic and other acoustic scattering. Journal of Sound and Vibration 585 (2024) 118461. [CrossRef] [Google Scholar]
- D. Baresch, J.-L. Thomas, R. Marchiano: Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere. The Journal of the Acoustical Society of America 133, 1 (2013) 25–36. [CrossRef] [PubMed] [Google Scholar]
- D. Blackstock: Fundamentals of physical acoustics, John Wiley & Sons, New York, NY, 2000. [Google Scholar]
- L. Robin: Fonctions sphériques de Legendre et fonctions sphéroidales, vol. 1, 2, 3, Gauthier-Villars, Paris, 1957. [Google Scholar]
- T.S. Hart, M.F. Hamilton: Nonlinear effects in focused sound beams. The Journal of the Acoustical Society of America 84, 4 (1988) 1488–1496. [CrossRef] [Google Scholar]
- M.F. Hamilton, V.A. Khokhlova, O.V. Rudenko: Analytical method for describing the paraxial region of finite amplitude sound beams. The Journal of the Acoustical Society of America 101, 3 (1997) 1298–1308. [CrossRef] [PubMed] [Google Scholar]
- D.T. Blackstock, J.M. Cormack, M.F. Hamilton: Early history of nonlinear acoustics. Proceedings of Meetings on Acoustics 36, 1 (2020) 045007. [Google Scholar]
- D. Blackstock: Fundamentals of physical acoustics, John Wiley & Sons, New York, USA, 2000. [Google Scholar]
- A. Pierce: Acoustics: an introduction to its physical principles and applications. 3rd edn., Springer, Berlin, 2019. [Google Scholar]
- G.B. Arfken, H.J. Weber: Mathematical methods for physicists, Harcourt/Academic Press, Burlington, MA, USA, 2001. [Google Scholar]
- Z. Gong, P.L. Marston, Wei Li: T-matrix evaluation of three-dimensional acoustic radiation forces on nonspherical objects in Bessel beams with arbitrary order and location. Physical Review E 99 (2019) 063004. [CrossRef] [PubMed] [Google Scholar]
- H.C. van de Hulst: Light scattering by small particles. Dover books on physics, Dover Publications, New York, 1981. [Google Scholar]
- F.G. Mitri, G.T. Silva: Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere. Wave Motion 48, 5 (2011) 392–400. [CrossRef] [Google Scholar]
- F.G. Mitri: Acoustic scattering of a high-order Bessel beam by an elastic sphere. Annals of Physics 323, 11 (2008) 2840–2850. [CrossRef] [Google Scholar]
- T. Hasegawa: Comparison of two solutions for acoustic radiation pressure on a sphere. The Journal of the Acoustical Society of America 61, 6 (1977) 1445–1448. [CrossRef] [Google Scholar]
- G. Gouesbet: Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres. Journal of the Optical Society of America A 16, 7 (1999) 1641–1650. [CrossRef] [Google Scholar]
- P.S. Epstein, R.R. Carhart: The absorption of sound in suspensions and emulsions. I. Water fog in air. The Journal of the Acoustical Society of America 25, 3 (1953) 553–565. [CrossRef] [Google Scholar]
- P.A. Martin: On acoustic scattering of beams. Wave Motion 115 (2022) 103075. [CrossRef] [Google Scholar]
- L.A. Ambrosio, H.E. Hernández-Figueroa: Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces. Biomedical Optics Express 2, 7 (2011) 1893–1906. [CrossRef] [PubMed] [Google Scholar]
- J. Durnin: Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A 4, 4 (1987) 651–654. [CrossRef] [Google Scholar]
- J. Durnin, J. Miceli Jr, J.H. Eberly: Diffraction-free beams. Physical Review Letters 58, 15 (1987) 1499–1501. cited By 2754. [CrossRef] [PubMed] [Google Scholar]
- G.N. Watson: A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, UK, 1944. [Google Scholar]
- R. Li, K.F. Ren, X. Han, Z. Wu, L. Guo, S. Gong: Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series. Journal of Quantitative Spectroscopy and Radiative Transfer 126 (2013) 69–77. Lasers and interactions with particles 2012. [CrossRef] [Google Scholar]
- W.J. Wiscombe: Improved Mie scattering algorithms. Applied Optics 19, 9 (1980) 1505–1509. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.