Open Access
Issue |
Acta Acust.
Volume 8, 2024
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 20 | |
Section | Virtual Acoustics | |
DOI | https://doi.org/10.1051/aacus/2024025 | |
Published online | 20 August 2024 |
- IEA: Global EV outlook 2023. International Energy Agency, Paris, Tech. Rep., 2023. [Google Scholar]
- L.M. Iversen, G. Marbjerg, H. Bendtsen: Noise from electric vehicles – ‘State-of-the-art’ literature survey. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 247 (2013) 267–271. [Google Scholar]
- M.-A. Pallas, M. Bérengier, R. Chatagnon, M. Czuka, M. Conter, M. Muirhead: Towards a model for electric vehicle noise emission in the European prediction method CNOSSOS-EU. Applied Acoustics 113 (2016) 89–101. [CrossRef] [Google Scholar]
- EAA: Environmental noise in Europe, European Environment Agency, Luxembourg, 2020. [Google Scholar]
- M. Wessels, S. Kröling, D. Oberfeld: Audiovisual time-to-collision estimation for accelerating vehicles: the acoustic signature of electric vehicles impairs pedestrians’ judgments. Transportation Research Part F: Traffic Psychology and Behaviour 91 (2022) 191–212. [CrossRef] [Google Scholar]
- UNECE: Regulation No 138 of the Economic Commission for Europe of the United Nations (UNECE) – Uniform provisions concerning the approval of Quiet Road Transport Vehicles with regard to their reduced audibility [2017/71]. Economic Commission for Europe of the United Nations, Tech. Rep., 2017. [Google Scholar]
- EU: Commission Delegated Regulation (EU) 2017/1576. European Union, Tech. Rep., 2017. [Google Scholar]
- M. Kleiner, B.-I. Dalenbäck, P. Svensson: Auralization – an overview. Journal of the Audio Engineering Society 41, 11 (1993) 861–875. [Google Scholar]
- J. Jagla, J. Maillard, N. Martin: Sample-based engine noise synthesis using an enhanced pitch-synchronous overlap-and-add method. The Journal of the Acoustical Society of America 132, 5 (2012) 3098–3108. [CrossRef] [PubMed] [Google Scholar]
- J. Forssén, P. Andersson, P. Bergman, K. Fredriksson, P. Zimmermann: Auralisation of truck engine sound – preliminary results using a granular approach, AIA-DAGA, Merano, 2013. [Online]. Available: https://research.chalmers.se/publication/188498. [Google Scholar]
- R. Pieren, T. Bütler, K. Heutschi: Auralization of accelerating passenger cars using spectral modeling synthesis. Applied Sciences 6, 1 (2015) 5. [CrossRef] [Google Scholar]
- J. Forssén, A. Hoffmann, W. Kropp: Auralization model for the perceptual evaluation of tyre–road noise. Applied Acoustics 132 (2018) 232–240. [CrossRef] [Google Scholar]
- W. Kropp, C. Hoever, J. Theyssen: Auralisation of tyre/road noise. In: Fortschritte der Akustik – DAGA, 2024. [Google Scholar]
- M.J. Roan, L. Neurauter, M. Song, M. Miller: Probability of detection of electric vehicles with and without added warning sounds. The Journal of the Acoustical Society of America 149, 1 (2021) 599–611. [CrossRef] [PubMed] [Google Scholar]
- M. Wessels, C. Zähme, D. Oberfeld: Auditory information improves time-to-collision estimation for accelerating vehicles. Current Psychology 42, 27 (2023) 23195–23205. [CrossRef] [Google Scholar]
- L. Steinbach, M.E. Altinsoy: Influence of an artificially produced stationary sound of electrically powered vehicles on the safety of visually impaired pedestrians. Applied Acoustics 165 (2020) 107290. [CrossRef] [Google Scholar]
- N. Kournoutos, J. Cheer: Investigation of a directional warning sound system for electric vehicles based on structural vibrationa. The Journal of the Acoustical Society of America 148, 2 (2020) 588–598. [CrossRef] [PubMed] [Google Scholar]
- B.U. Seeber, S. Kerber, E.R. Hafter: A system to simulate and reproduce audio–visual environments for spatial hearing research. Hearing Research 260, 1–2 (2010) 1–10. [CrossRef] [PubMed] [Google Scholar]
- G. Grimm, J. Luberadzka, V. Hohmann: A toolbox for rendering virtual acoustic environments in the context of audiology. Acta Acustica United with Acustica 105, 3 (2019) 566–578. [CrossRef] [Google Scholar]
- IHTA: Virtual acoustics – a real-time auralization framework for scientific research. Institute for Hearing Technology and Acoustics – RWTH Aachen University, accessed on 2023-11-07. [Online]. Available: http://www.virtualacoustics.org/. [Google Scholar]
- D. Gonzalez-Toledo, L. Molina-Tanco, M. Cuevas-Rodríguez, P. Majdak, A. Reyes-Lecuona: The binaural rendering toolbox. A virtual laboratory for reproducible research in psychoacoustics. In: Forum Acusticum 2023 – 10th Convention of the European Acoustics Association, 2023. [Google Scholar]
- K. Heutschi, E. Bühlmann, J. Oertli: Options for reducing noise from roads and railway lines. Transportation Research Part A: Policy and Practice 94 (2016) 308–322. [Google Scholar]
- EU: Regulation (EU) 2020/740 of the European parliament and of the council on the labelling of tyres with respect to fuel efficiency and other parameters. Official Journal of the European Union, 2020. [Google Scholar]
- L. Müller, W. Kropp: Dataset: “Auralization of electric vehicles for the perceptual evaluation of acoustic vehicle alerting systems”. Zenodo, 2024. [Online]. Available: https://doi.org/10.5281/zenodo.10610490. [Google Scholar]
- U. Sandberg, J.A. Ejmont: Tyre/road noise reference book. Informex Ejsmont & Sandberg handelsbolag, 2002. [Google Scholar]
- M. Strasberg: Dimensional analysis of windscreen noise. The Journal of the Acoustical Society of America 83, 2 (1988) 544–548. [CrossRef] [Google Scholar]
- W. Kropp, F.-X. Bécot, S. Barrelet: On the sound radiation from tyres. Acustica United with Acta Acustica 86 (2000) 769–779. [Google Scholar]
- A. Oppenheim, R. Schafer: Discrete-time signal processing, 3rd edn., Prentice-Hall Signal Processing Series, Pearson, New Jersey, 2014. [Google Scholar]
- Beauchamp, W. James: Additive synthesis of harmonic musical tones. Journal of the Audio Engineering Society 14, 4 (1966) 332–342. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=1129. [Google Scholar]
- J.O. Smith, Spectral audio signal processing. W3K Publishing, 2011. [Online]. Available: http://ccrma.stanford.edu/~jos/sasp/. [Google Scholar]
- Couch: Digital and analog communication systems, 8th edn., Prentice-Hall International Editions, Pearson, New Jersey, 2013. [Google Scholar]
- M.A. Fischler, R.C. Bolles: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 6 (1981) 381–395. [CrossRef] [Google Scholar]
- P. Torr, A. Zisserman: MLESAC: a new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 1 (2000) 138–156. [CrossRef] [Google Scholar]
- V.I. Lebedev, D.N. Laikov: A quadrature formula for the sphere of the 131st algebraic order of accuracy. Doklady Mathematics 59 (1999) 477–481. [Google Scholar]
- E.G. Williams: Fourier Acoustics, Academic Press, London, 1999. [Google Scholar]
- G. Weinreich, E.B. Arnold: Method for measuring acoustic radiation fields. The Journal of the Acoustical Society of America 68, 2 (1980) 404–411. [CrossRef] [Google Scholar]
- F. Zotter: Analysis and synthesis of sound-radiation with spherical arrays. Ph.D. dissertation, University of Music and Dramatic Arts, Graz, 2009. [Google Scholar]
- M. Pollow: Directivity patterns for room acoustical measurements and simulations. Ph.D. dissertation, RWTH Aachen, 2014. [Google Scholar]
- J. Ahrens, S. Bilbao: Computation of spherical harmonic representations of source directivity based on the finite-distance signature. IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2020) 83–92. [Google Scholar]
- J. Theyssen, T. Deppisch, A. Pieringer, W. Kropp: On the efficient simulation of pass-by noise signals from railway wheels. Journal of Sound and Vibration 564 (2023) 117889. [CrossRef] [Google Scholar]
- M. Alkmim, G. Vandernoot, J. Cuenca, K. Janssens, W. Desmet, L.D. Ryck: Real-time sound synthesis of pass-by noise: comparison of spherical harmonics and time-varying filters. Acta Acustica 7 (2023) 37. [CrossRef] [EDP Sciences] [Google Scholar]
- D.N. Zotkin, R. Duraiswami, N.A. Gumerov: Regularized HRTF fitting using spherical harmonics. In: Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2009. [Google Scholar]
- B. Bernschütz: Microphone arrays and sound field decomposition for dynamic binaural recording. Ph.D. dissertation, Technical University of Berlin, 2016. [Google Scholar]
- M. Frank, M. Brandner: Perceptual evaluation of spatial resolution in directivity patterns. In: Fortschritte der Akustik – DAGA, 2019. [Google Scholar]
- T. Lübeck, C. Pörschmann: Investigation of the minimum required spatial resolution of moving sound sources. In: Fortschritte der Akustik – DAGA, 2023. [Google Scholar]
- R.J. Allemang: The modal assurance criterion-twenty years of use and abuse. Sound and Vibration 37 (2003) 14–23. [Google Scholar]
- I.B. Hagai, M. Pollow, M. Vorländer, B. Rafaely: Acoustic centering of sources measured by surrounding spherical microphone arrays. The Journal of the Acoustical Society of America 130, 4 (2011) 2003–2015. [CrossRef] [PubMed] [Google Scholar]
- J. Ahrens, S. Spors: Reproduction of moving virtual sound sources with special attention to the Doppler effect. In: 124th Convention of the AES, 2008. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=14493. [Google Scholar]
- ISO: ISO 9613-1:1993 Acoustics – attenuation of sound during propagation outdoors – Part 1: Calculation of the absorption of sound by the atmosphere. International Organization for Standardization, Tech. Rep., 1993. [Google Scholar]
- J. Blauert: Spatial hearing: the psychophysics of human sound localization, The MIT Press, Cambridge, Massachusetts, 1996. [Google Scholar]
- F. Brinkmann, A. Lindau, S. Weinzierl: On the authenticity of individual dynamic binaural synthesis. The Journal of the Acoustical Society of America 142, 4 (2017) 1784–1795. [CrossRef] [PubMed] [Google Scholar]
- A. Lindau, S. Weinzierl: Assessing the plausibility of virtual acoustic environments. Forum Acusticum 2011 (2011) 1187–1192. [Google Scholar]
- C. Kuhn-Rahloff: Realitätstreue, Natürlichkeit, Plausibilität, Perzeptive Beurteilungen in der Elektroakustik. Springer Berlin, Heidelberg, 2012. [CrossRef] [Google Scholar]
- R.S. Pellegrini: Quality assessment of auditory virtual environments. In: Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, 2001. [Google Scholar]
- C. Pörschmann, J.M. Arend, R. Gillioz: Spherical headgear HRIR compilation of the Neumann KU100 and the head acoustics HMS II.3 [Data set]. In: EAA spatial audio signal processing symposium, Paris, France, 2020. [Google Scholar]
- ISO: ISO/TS 15666 acoustics – assessment of noise annoyance by means of social and socio-acoustic surveys. International Organization for Standardization, Tech. Rep., 2021. [Google Scholar]
- A.G. Barnett, J.C.v.d. Pols, A.J. Dobson: Regression to the mean: what it is and how to deal with it. International Journal of Epidemiology 34, 1 (2005) 215–220. [Google Scholar]
- D.L. Schacter, R.L. Buckner: Priming and the brain. Neuron 20, 2 (1998) 185–195. [Google Scholar]
- B. Schäffer, R. Pieren, U.W. Hayek, N. Biver, A. Grêt-Regamey: Influence of visibility of wind farms on noise annoyance – a laboratory experiment with audio-visual simulations. Landscape and Urban Planning 186 (2019) 67–78. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.