Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 57
Number of page(s) 22
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2024061
Published online 30 October 2024
  1. S.J. Aiken, J.N. Andrus, M. Bance, D.P. Phillips: Acoustic stapedius reflex function in man revisited, Ear and Hearing 34, 4 (2013) E38–E51. https://doi.org/10.1097/AUD.0b013e31827ad9d3. [Google Scholar]
  2. M. Alpern, J.J. Faris: Luminance-duration relationship in the electric response of the human retina, Journal of the Optical Society of America 46, 10 (1956) 845–850. https://doi.org/10.1364/josa.46.000845. [CrossRef] [PubMed] [Google Scholar]
  3. M. Bach: The Freiburg Visual Acuity test: automatic measurement of visual acuity, Optometry and Vision Science 73, 1 (1996) 49–53. https://doi.org/10.1097/00006324-199601000-00008. [CrossRef] [PubMed] [Google Scholar]
  4. S.P. Bacon, N.F. Viemeister: Temporal modulation transferfunctions in normal-hearing and hearing-impaired listeners, Audiology 24, 2 (1985) 117–134. [CrossRef] [Google Scholar]
  5. B.G. Berg: Analysis of weights in multiple observation tasks, Journal of the Acoustical Society of America 86, 5 (1989) 1743–1746. [CrossRef] [Google Scholar]
  6. B.G. Berg, D.E. Robinson: Multiple observations and internal noise, Journal of the Acoustical Society of America 81 (1987) S33. [CrossRef] [Google Scholar]
  7. W.R. Biersdorf: Critical duration in visual brightness discrimination for retinal areas of various sizes, Journal of the Optical Society of America 45, 11 (1955) 920–925. https://doi.org/10.1364/josa.45.000920. [CrossRef] [PubMed] [Google Scholar]
  8. P. Binda, M. Pereverzeva, S.O. Murray: Attention to bright surfaces enhances the pupillary light reflex, Journal of Neuroscience 33, 5 (2013) 2199–2204. https://doi.org/10.1523/jneurosci.3440-12.2013. [CrossRef] [PubMed] [Google Scholar]
  9. G.S. Brindley: The discrimination of after-images, Journal of Physiology-London 147, 1 (1959) 194–203. https://doi.org/10.1113/jphysiol.1959.sp006234. [CrossRef] [PubMed] [Google Scholar]
  10. Z.Z. Bronfman, N. Brezis, M. Usher: Non-monotonic temporal-weighting indicates a dynamically modulated evidence-integration mechanism, PLoS Computational Biology 12, 2 (2016) e1004667. https://doi.org/10.1371/journal.pcbi.1004667. [CrossRef] [PubMed] [Google Scholar]
  11. M. Brysbaert, M. Stevens: Power analysis and effect size in mixed effects models: a tutorial, Journal of Cognition 1, 1 (2018) 9. https://doi.org/10.5334/joc.10. [CrossRef] [PubMed] [Google Scholar]
  12. J.R. Busemeyer, J.T. Townsend: Decision field theory: a dynamic cognitive approach to decision-making in an uncertain environment, Psychological Review 100, 3 (1993) 432–459. https://doi.org/10.1037//0033-295x.100.3.432. [CrossRef] [PubMed] [Google Scholar]
  13. F.W. Campbell, A.H. Gregory: Effect of size of pupil on visual acuity, Nature 187, 4743 (1960) 1121–1123. https://doi.org/10.1038/1871121c0. [CrossRef] [Google Scholar]
  14. J. Chalupper, H. Fastl: Dynamic loudness model (DLM) for normal and hearing-impaired listeners, Acta Acustica United with Acustica 88, 3 (2002) 378–386. [Google Scholar]
  15. S. Cheadle, V. Wyart, K. Tsetsos, N. Myers, V. de Gardelle, S.H. Castanon, C. Summerfield: Adaptive gain control during human perceptual choice, Neuron 81, 6 (2014) 1429–1441. https://doi.org/10.1016/j.neuron.2014.01.020. [CrossRef] [PubMed] [Google Scholar]
  16. G.T. Church, E.A. Cudahy: The time course of the acoustic reflex, Ear and Hearing 5, 4 (1984) 235–242. https://doi.org/10.1097/00003446-198407000-00008. [CrossRef] [PubMed] [Google Scholar]
  17. K. Dittrich, D. Oberfeld: A comparison of the temporal weighting of annoyance and loudness, Journal of the Acoustical Society of America 126, 6 (2009) 3168–3178. https://doi.org/10.1121/1.3238233. [CrossRef] [PubMed] [Google Scholar]
  18. W. Ellermeier, S. Schrödl: Temporal weights in loudness summation. In: C. Bonnet (Ed.), Fechner Day 2000. Proceedings of the 16th annual meeting of the international society for psychophysics. Strasbourg: Université Louis Pasteur, 2000, pp. 169–173. [Google Scholar]
  19. A. Fischenich, J. Hots, J. Verhey, D. Oberfeld: Temporal weights in loudness: investigation of the effects of background noise and sound level, PLoS One 14, 11 (2019) e0223075. https://doi.org/10.1371/journal.pone.0223075. [CrossRef] [PubMed] [Google Scholar]
  20. A. Fischenich, J. Hots, J. Verhey, D. Oberfeld: Temporal loudness weights are frequency specific, Frontiers in Psychology 12 (2021) 588571. https://doi.org/10.3389/fpsyg.2021.588571. [CrossRef] [PubMed] [Google Scholar]
  21. A. Fischenich, J. Hots, J.L. Verhey, D. Oberfeld: The effect of silent gaps on temporal weights in loudness judgments, Hearing Research 395 (2020) 108028. https://doi.org/10.1016/j.heares.2020.108028. [CrossRef] [PubMed] [Google Scholar]
  22. M. Florentine, S. Buus, T. Poulsen: Temporal integration of loudness as a function of level, Journal of the Acoustical Society of America 99, 3 (1996) 1633–1644. [CrossRef] [PubMed] [Google Scholar]
  23. L. Ganz: Temporal factors in visual perception. In: E.C. Carterette, M.P. Friedman (Eds.), Handbook of perception (Vol. 5: Seeing). New York, San Francisco, London: Academic Press, 1975, pp. 169–231. [Google Scholar]
  24. B.R. Glasberg, B.C.J. Moore: A model of loudness applicable to time-varying sounds, Journal of the Audio Engineering Society 50, 5 (2002) 331–342. [Google Scholar]
  25. D.M. Green: Detection of multiple component signals in noise, Journal of the Acoustical Society of America 30, 10 (1958) 904–911. [CrossRef] [Google Scholar]
  26. J.H. Grose, D.A. Eddins, J.W. Hall: Gap detection as a function of stimulus bandwidth with fixed high-frequency cutoff in normal-hearing and hearing-impaired listeners, Journal of the Acoustical Society of America 86, 5 (1989) 1747–1755. https://doi.org/10.1121/1.398606. [CrossRef] [PubMed] [Google Scholar]
  27. S. Haegens, J. Vergara, R. Rossi-Pool, L. Lemus, R. Romo: Beta oscillations reflect supramodal information during perceptual judgment. Proceedings of the National Academy of Sciences of the United States of America 114, 52 (2017) 13810–13815. https://doi.org/10.1073/pnas.1714633115. [CrossRef] [PubMed] [Google Scholar]
  28. D.M. Harris, P. Dallos: Forward masking of auditory-nerve fiber responses, Journal of Neurophysiology 42, 4 (1979) 1083–1107. [CrossRef] [PubMed] [Google Scholar]
  29. M.J. Hautus: Corrections for extreme proportions and their biasing effects on estimated values of d′, Behavior Research Methods Instruments & Computers 27, 1 (1995) 46–51. [CrossRef] [Google Scholar]
  30. R.P. Hellman: Loudness, annoyance, and noisiness produced by single-tone-noise complexes, Journal of the Acoustical Society of America 72, 1 (1982) 62–73. [CrossRef] [PubMed] [Google Scholar]
  31. C. Hendrick, A.F. Costantini: Number averaging behavior: a primacy effect, Psychonomic Science 19, 2 (1970) 121–122. https://doi.org/10.3758/bf03337452. [CrossRef] [Google Scholar]
  32. D.C. Hood, B.G. Grover: Temporal summation of light by a vertebrate visual receptor, Science 184, 4140 (1974) 1003–1005. https://doi.org/10.1126/science.184.4140.1003. [CrossRef] [PubMed] [Google Scholar]
  33. J. Hots, J. Rennies, J.L. Verhey: Modeling temporal integration of loudness, Acta Acustica United with Acustica 100, 1 (2014) 184–187. https://doi.org/10.3813/aaa.918697. [CrossRef] [Google Scholar]
  34. B. Hubert-Wallander, G.M. Boynton: Not all summary statistics are made equal: evidence from extracting summaries across time, Journal of Vision 15, 4 (2015) 5. https://doi.org/10.1167/15.4.5. [CrossRef] [Google Scholar]
  35. H. Huynh, L.S. Feldt: Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs, Journal of Educational Statistics 1, 1 (1976) 69–82. https://doi.org/10.2307/1164736. [CrossRef] [Google Scholar]
  36. IEC 60318–1:1998: Electroacoustics – simulators of human head and ear. Part 1: Ear simulator for the measurement of supra-aural and circumaural earphones. Geneva: International Electrotechnical Commission, 1998. [Google Scholar]
  37. S.G. Jennings, M.G. Heinz, E.A. Strickland: Evaluating adaptation and olivocochlear efferent feedback as potential explanations of psychophysical overshoot, JARO-Journal of the Association for Research in Otolaryngology 12, 3 (2011) 345–360. https://doi.org/10.1007/s10162-011-0256-5. [CrossRef] [PubMed] [Google Scholar]
  38. W. Jesteadt, L. Leibold: Loudness in the laboratory, Part I: Steady-state sounds. In: M. Florentine, A.N. Popper, R.R. Fay (Eds.), Loudness, Springer, New York, NY, 2011, pp. 109–144. https://doi.org/10.1007/978-1-4419-6712-1_1. [CrossRef] [Google Scholar]
  39. N.Y.S. Kiang, T. Watanabe, E.C. Thomas, L.F. Clark: Discharge patterns of single fibers in the cat’s auditory nerve, M.I.T. Press, Cambridge, MA, 1965. [Google Scholar]
  40. R. Kiani, T.D. Hanks, M.N. Shadlen: Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment, Journal of Neuroscience 28, 12 (2008) 3017–3029. https://doi.org/10.1523/jneurosci.4761-07.2008. [CrossRef] [PubMed] [Google Scholar]
  41. M. Kubovy, A.F. Healy: The decision rule in probabilistic categorization: what it is and how it is learned? Journal of Experimental Psychology: General 106, 4 (1977) 427–446. https://doi.org/10.1037//0096-3445.106.4.427. [CrossRef] [Google Scholar]
  42. M.F. Lewis: Two-flash thresholds as a function of luminance in the dark-adapted eye, Journal of the Optical Society of America 57, 6 (1967) 814–815. https://doi.org/10.1364/josa.57.000814. [CrossRef] [PubMed] [Google Scholar]
  43. Z.L. Lu, B.A. Dosher: Characterizing observers using external noise and observer models: assessing internal representations with external noise, Psychological Review 115, 1 (2008) 44–82. [CrossRef] [PubMed] [Google Scholar]
  44. R.A. Lutfi: Informational processing of complex sound. I: Intensity discrimination, Journal of the Acoustical Society of America 86, 3 (1989) 934–944. https://doi.org/10.1121/1.398728. [CrossRef] [PubMed] [Google Scholar]
  45. R.J. Mansfield: Brightness function: effect of area and duration, Journal of the Optical Society of America 63, 8 (1973) 913–920. https://doi.org/10.1364/josa.63.000913. [CrossRef] [PubMed] [Google Scholar]
  46. B.C.J. Moore, M. Jervis, L. Harries, J. Schlittenlacher: Testing and refining a loudness model for time-varying sounds incorporating binaural inhibition, Journal of the Acoustical Society of America 143, 3 (2018) 1504–1513. https://doi.org/10.1121/1.5027246. [Google Scholar]
  47. B.C.J. Moore, D.H. Raab: Pure-tone intensity discrimination: some experiments relating to the “near-miss” to Weber’s law, Journal of the Acoustical Society of America 55, 5 (1974) 1049–1054. [CrossRef] [PubMed] [Google Scholar]
  48. P. Neri, D.M. Levi: Receptive versus perceptive fields from the reverse-correlation viewpoint, Vision Research 46, 16 (2006) 2465–2474. https://doi.org/10.1016/j.visres.2006.02.002. [CrossRef] [PubMed] [Google Scholar]
  49. R.G. O’Connell, P.M. Dockree, S.P. Kelly: A supramodal accumulation-to-bound signal that determines perceptual decisions in humans, Nature Neuroscience 15, 12 (2012) 1729–1735. https://doi.org/10.1038/nn.3248. [CrossRef] [PubMed] [Google Scholar]
  50. D. Oberfeld: The mid-difference hump in forward-masked intensity discrimination, Journal of the Acoustical Society of America 123, 3 (2008) 1571–1581. https://doi.org/10.1121/1.2837284. [CrossRef] [PubMed] [Google Scholar]
  51. D. Oberfeld: Are temporal loudness weights under top-down control? Effects of trial-by-trial feedback, Acta Acustica United with Acustica 101, 6 (2015) 1105–1115. https://doi.org/10.3813/aaa.918904. [CrossRef] [Google Scholar]
  52. D. Oberfeld, A. Fischenich, E. Ponsot: Dataset: trial-by-trial data from two psychophysical experiments on temporal weights in loudness and brightness judgments, 2023. https://doi.org/10.17605/OSF.IO/X5KD9. [Google Scholar]
  53. D. Oberfeld, A. Fischenich, E. Ponsot, J. Verhey, J. Hots: What causes the primacy effect in temporal loudness weights? In: E. Parizet (Ed.), Proceedings of the eForum acusticum. Lyon, 2020, pp. 3411–3415. https://doi.org/10.48465/fa.2020.0835. [Google Scholar]
  54. D. Oberfeld, W. Heeren, J. Rennies, J. Verhey: Spectro-temporal weighting of loudness, PLoS One 7, 11 (2012) e50184. https://doi.org/10.1371/journal.pone.0050184. [CrossRef] [PubMed] [Google Scholar]
  55. D. Oberfeld, J. Hots, J.L. Verhey: Temporal weights in the perception of sound intensity: effects of sound duration and number of temporal segments, Journal of the Acoustical Society of America 143, 2 (2018) 943–953. https://doi.org/10.1121/1.5023686. [CrossRef] [PubMed] [Google Scholar]
  56. D. Oberfeld, L. Jung, J.L. Verhey, J. Hots: Evaluation of a model of temporal weights in loudness judgments, Journal of the Acoustical Society of America 144, 2 (2018) EL119–EL124. https://doi.org/10.1121/1.5049895. [CrossRef] [PubMed] [Google Scholar]
  57. D. Oberfeld, M. Kuta, W. Jesteadt: Factors limiting performance in a multitone intensity-discrimination task: disentangling non-optimal decision weights and increased internal noise, PLoS One 8, 11 (2013) e79830. https://doi.org/10.1371/journal.pone.0097209. [CrossRef] [PubMed] [Google Scholar]
  58. D. Oberfeld, T. Plank: The temporal weighting of loudness: effects of the level profile, Attention, Perception, & Psychophysics 73, 1 (2011) 189–208. https://doi.org/10.3758/s13414-010-0011-8. [CrossRef] [PubMed] [Google Scholar]
  59. D. Oberfeld, P. Stahn, M. Kuta: Why do forward maskers affect auditory intensity discrimination? Evidence from “molecular psychophysics”, PLoS One 9, 6 (2014) e99745. https://doi.org/10.1371/journal.pone.0099745. [CrossRef] [PubMed] [Google Scholar]
  60. G. Okazawa, L. Sha, R. Kiani: Linear integration of sensory evidence over space and time underlies face categorization, Journal of Neuroscience 41, 37 (2021) 7876–7893. https://doi.org/10.1523/jneurosci.3055-20.2021. [CrossRef] [PubMed] [Google Scholar]
  61. G. Okazawa, L. Sha, B.A. Purcell, R. Kiani: Psychophysical reverse correlation reflects both sensory and decision-making processes, Nature Communications 9 (2018) 3479. https://doi.org/10.1038/s41467-018-05797-y. [CrossRef] [PubMed] [Google Scholar]
  62. B. Pedersen: Auditory temporal resolution and integration. Stages of analyzing time-varying sounds. Ph.D. thesis, Aalborg University, Aalborg, DK, 2006. [Google Scholar]
  63. B. Pedersen, W. Ellermeier: Temporal weights in the level discrimination of time-varying sounds, Journal of the Acoustical Society of America 123, 2 (2008) 963–972. https://doi.org/10.1121/1.2822883. [CrossRef] [PubMed] [Google Scholar]
  64. E. Ponsot, P. Susini, G. Saint Pierre, S. Meunier: Temporal loudness weights for sounds with increasing and decreasing intensity profiles, Journal of the Acoustical Society of America 134, 4 (2013) EL321–EL326. https://doi.org/10.1121/1.4819184. [CrossRef] [PubMed] [Google Scholar]
  65. G. Prat-Ortega, K. Wimmer, A. Roxin, J. de la Rocha: Flexible categorization in perceptual decision making, Nature Communications 12, 1 (2021) 1283. https://doi.org/10.1038/s41467-021-21501-z. [CrossRef] [PubMed] [Google Scholar]
  66. D.G. Purcell, A.L. Stewart: The two-flash threshold: an evaluation of critical-duration and visual-persistence hypotheses, Perception & Psychophysics 9, 1A (1971) 61–64. https://doi.org/10.3758/bf03213029. [CrossRef] [Google Scholar]
  67. D.H. Raab, I.A. Goldberg: Auditory intensity discrimination with bursts of reproducible noise, Journal of the Acoustical Society of America 57, 2 (1975) 437–447. https://doi.org/10.1121/1.380467. [CrossRef] [PubMed] [Google Scholar]
  68. R. Ratcliff: A theory of memory retrieval, Psychological Review 85, 2 (1978) 59–108. https://doi.org/10.1037/0033-295x.85.2.59. [CrossRef] [Google Scholar]
  69. R. Ratcliff, P.L. Smith, S.D. Brown, G. McKoon: Diffusion decision model: current issues and history, Trends in Cognitive Sciences 20, 4 (2016) 260–281. https://doi.org/10.1016/j.tics.2016.01.007. [CrossRef] [PubMed] [Google Scholar]
  70. E.M. Relkin, J.R. Doucet: Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons, Hearing Research 55, 2 (1991) 215–222. [CrossRef] [PubMed] [Google Scholar]
  71. E.M. Relkin, J.R. Doucet: Is loudness simply proportional to the auditory nerve spike count? Journal of the Acoustical Society of America 101, 5 Pt 1 (1997) 2735–2740. [CrossRef] [PubMed] [Google Scholar]
  72. J. Rennies, J.L. Verhey: Temporal weighting in loudness of broadband and narrowband signals, Journal of the Acoustical Society of America 126, 3 (2009) 951–954. https://doi.org/10.1121/1.3192348. [CrossRef] [PubMed] [Google Scholar]
  73. W.S. Rhode, P.H. Smith: Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers, Hearing Research 18, 2 (1985) 159–168. https://doi.org/10.1016/0378-5955(85)90008-5. [CrossRef] [PubMed] [Google Scholar]
  74. J.E. Rose, J.F. Brugge, D.J. Anderson, J.E. Hind: Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey, Journal of Neurophysiology 30, 4 (1967) 769–793. https://doi.org/10.1152/jn.1967.30.4.769. [CrossRef] [PubMed] [Google Scholar]
  75. W.A. Rosenblith, G.A. Miller, J.P. Egan, I.J. Hirsh, G.J. Thomas: An auditory afterimage, Science 106, 2754 (1947) 333–335. https://doi.org/10.1126/science.106.2754.333. [CrossRef] [PubMed] [Google Scholar]
  76. J.A.J. Roufs: Dynamic properties of vision–I. Experimental relationships between flicker and flash thresholds, Vision Research 12, 2 (1972) 261–278. https://doi.org/10.1016/0042-6989(72)90117-4. [CrossRef] [PubMed] [Google Scholar]
  77. H. Sato, I. Motoyoshi: Distinct strategies for estimating the temporal average of numerical and perceptual information, Vision Research 174 (2020) 41–49. https://doi.org/10.1016/j.visres.2020.05.004. [CrossRef] [PubMed] [Google Scholar]
  78. M.J. Shailer, B.C.J. Moore: Gap detection as a function of frequency, bandwidth, and level, Journal of the Acoustical Society of America 74, 2 (1983) 467–473. https://doi.org/10.1121/1.389812. [CrossRef] [PubMed] [Google Scholar]
  79. P.L. Smith, D.R. Little: Small is beautiful: in defense of the small-N design, Psychonomic Bulletin & Review 25, 6 (2018) 2083–2101. https://doi.org/10.3758/s13423-018-1451-8. [CrossRef] [PubMed] [Google Scholar]
  80. R.D. Sorkin, D.E. Robinson, B.G. Berg: A detection theory method for the analysis of auditory and visual displays. In: Proceedings of the 31st annual meeting of the human factors society, 1987, pp. 1184–1188. [Google Scholar]
  81. B. Spitzer, F. Blankenburg: Supramodal parametric working memory processing in humans, Journal of Neuroscience 32, 10 (2012) 3287–3295. https://doi.org/10.1523/jneurosci.5280-11.2012. [CrossRef] [PubMed] [Google Scholar]
  82. G.C. Stecker, E.R. Hafter: Temporal weighting in sound localization, Journal of the Acoustical Society of America 112, 3 (2002) 1046–1057. https://doi.org/10.1121/1.1497366. [CrossRef] [PubMed] [Google Scholar]
  83. J.C. Stevens, J.W. Hall: Brightness and loudness as functions of stimulus duration, Perception & Psychophysics 1, 9 (1966) 319–327. https://doi.org/10.3758/bf03215796. [CrossRef] [Google Scholar]
  84. M. Stone: Models for choice-reaction time, Psychometrika 25, 3 (1960) 251–260. https://doi.org/10.1007/bf02289729. [CrossRef] [Google Scholar]
  85. J.A. Swets, E.F. Shipley, M.J. McKey, D.M. Green: Multiple observations of signals in noise, Journal of the Acoustical Society of America 31, 4 (1959) 514–521. [CrossRef] [Google Scholar]
  86. K. Tsetsos, J. Gao, J.L. McClelland, M. Usher: Using time-varying evidence to test models of decision dynamics: bounded diffusion vs. the leaky competing accumulator model, Frontiers in Neuroscience 6 (2012) 79. https://doi.org/10.3389/fnins.2012.00079. [CrossRef] [PubMed] [Google Scholar]
  87. J. Vergara, N. Rivera, R. Rossi-Pool, R. Romo: A neural parametric code for storing information of more than one sensory modality in working memory, Neuron 89, 1 (2016) 54–62. https://doi.org/10.1016/j.neuron.2015.11.026. [CrossRef] [PubMed] [Google Scholar]
  88. J.L. Verhey: Temporal resolution and temporal integration. In: C.J. Plack (Ed.), The Oxford handbook of auditory science: hearing, Vol. 3, Oxford University Press, Oxford, 2010, pp. 105–122. https://doi.org/10.1093/oxfordhb/9780199233557.013.0005. [Google Scholar]
  89. D. Vickers: Evidence for an accumulator model of psychophysical discrimination, Ergonomics 13, 1 (1970) 37–58. https://doi.org/10.1080/00140137008931117. [CrossRef] [PubMed] [Google Scholar]
  90. N.F. Viemeister: Temporal modulation transfer functions based upon modulation thresholds, Journal of the Acoustical Society of America 66, 5 (1979) 1364–1380. [CrossRef] [PubMed] [Google Scholar]
  91. N.F. Viemeister, G.H. Wakefield: Temporal integration and multiple looks, Journal of the Acoustical Society of America 90, 2 (1991) 858–865. [CrossRef] [PubMed] [Google Scholar]
  92. T.Y. Yeh, B.B. Lee, J. Kremers: The time course of adaptation in macaque retinal ganglion cells, Vision Research 36, 7 (1996) 913–931. https://doi.org/10.1016/0042-6989(95)00332-0. [CrossRef] [PubMed] [Google Scholar]
  93. F.G. Zeng, C.W. Turner: Intensity discrimination in forward masking, Journal of the Acoustical Society of America 92, 2 (1992) 782–787. [CrossRef] [PubMed] [Google Scholar]
  94. F.G. Zeng, C.W. Turner, E.M. Relkin: Recovery from prior stimulation II: effects upon intensity discrimination, Hearing Research 55, 2 (1991) 223–230. [CrossRef] [PubMed] [Google Scholar]
  95. E. Zwicker: Negative afterimage in hearing, Journal of the Acoustical Society of America 36, 12 (1964) 2413–2415. https://doi.org/10.1121/1.1919373. [CrossRef] [Google Scholar]
  96. E. Zwicker: Procedure for calculating loudness of temporally variable sounds, Journal of the Acoustical Society of America 62, 3 (1977) 675–682. https://doi.org/10.1121/1.381580. [CrossRef] [PubMed] [Google Scholar]
  97. J.J. Zwislocki: Temporal summation of loudness: an analysis, Journal of the Acoustical Society of America 46, 2 (1969) 431–441. https://doi.org/10.1121/1.1911708. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.