Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 58
Number of page(s) 12
Section Computational and Numerical Acoustics
DOI https://doi.org/10.1051/aacus/2024041
Published online 18 November 2024
  1. S.K. Lele, J.W. Nichols: A second golden age of aeroacoustics? Philosophical Transactions of the Royal Society A372 (2014) 20130321. [Google Scholar]
  2. S. Schoder, M. Kaltenbacher: Hybrid aeroacoustic computations: state of art and new achievements. Journal of Theoretical and Computational Acoustics 27, 4 (2019) 1950020. [CrossRef] [Google Scholar]
  3. M.E. Golstein: Aeroacoustics. McGraw Hill International Book Company, New York City, New York, USA, 1976, pp. 59–61. [Google Scholar]
  4. J.E. Ffowcs Williams, D.L. Hawkings: Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London 264, A1151 (1969) 321–342. [CrossRef] [Google Scholar]
  5. J. Utzmann, C.-D. Munz, M. Dumbser, E. Sonnendrücker, S. Salmon, S. Jund, E. Frénod: Fluid-acoustic coupling and wave propagation. Numerical Simulation of Turbulent Flows and Noise Generation 104 (2009) 47–74. [CrossRef] [Google Scholar]
  6. G. Djambazov, C.-H. Lai, K. Pericleous: On the coupling of Navier-Stokes and linearised Euler equations for aeroacoustic simulation. Computing and Visualization in Science 3 (2000) 9–12. [CrossRef] [Google Scholar]
  7. R. Harris, E. Collins, E. Luke, A. Sescu: Coupled overset unstructured discontinuous Galerkin method for launch environment acoustics prediction. AIAA Journal 54, 6 (2016) 1932–1952. [CrossRef] [Google Scholar]
  8. A. Langenais, F. Vuillot, Ch. Peyret, G. Chaineray, Ch. Bailly: Assessment of a two-way coupling methodology between a flow and a high-order nonlinear acoustic unstructured solvers. Flow, Turbulence and Combustion 101 (2018) 681–703. [CrossRef] [Google Scholar]
  9. A. Tosh, P. Liever, F. Owens, Y. Liu: A high-fidelity CFD/BEM methodology for launch pad acoustic environment prediction. In: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012, p. 2107. [Google Scholar]
  10. L. Dürrwächter, M. Kebler, E. Krämer: Numerical assessment of open-rotor noise shielding with a coupled approach. AIAA Journal 57, 5 (2019) 1930–1940. [CrossRef] [Google Scholar]
  11. D. Casalino, M. Barbarino, A. Visingardi: Simulation of helicopter community noise in complex urban geometry. AIAA Journal 49, 8 (2011) 1614–1624. [CrossRef] [Google Scholar]
  12. G.V. Groves: Geometrical theory of sound in the atmosphere. Journal of Atmospheric and Terrestrial Physics 7 (1955) 113–127. [CrossRef] [Google Scholar]
  13. R.J. Thompson: Ray theory for an inhomogeneous moving medium. JASA 51 (1965) 1675–1682. [Google Scholar]
  14. S.M. Candel: Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics. Journal of Fluid Mechanics 83 (1977) 465–493. [CrossRef] [Google Scholar]
  15. Y.P. Guo, R.H. Thomas: Geometric acoustics for aircraft noise scattering. In: 28th AIAA/CEAS Aeroacoustics Conference, AIAA 2022-3077, June 2022. [Google Scholar]
  16. T.V. Cox, Y.W. Lam: Evaluation of methods for predicting the scattering from simple rigid panels. Applied Acoustics 40, 2 (1993) 123–140. [CrossRef] [Google Scholar]
  17. K.G. Foote, D.T.I. Francis: Comparing Kirchhoff-approximation and boundary-element models for computing gadoid target strengths. Journal of the Acoustical Society of America 111, 4 (2002) 1644–1654. [CrossRef] [PubMed] [Google Scholar]
  18. F.-E. Aballéa, J. Defrance: Single and multiple reflections in plane obstacle using the parabolic equation method with a complementary Kirchhoff approximation. Acta Acustica 93 (2007) 22–30. [Google Scholar]
  19. N.J. Pignier, C.J. O’Reilly, S. Boij: A Kirchhoff approximation-based numerical method to compute multiple acoustic scattering of a moving source. Applied Acoustics 96 (2015) 108–117. [CrossRef] [Google Scholar]
  20. Y.P. Guo, D.S. Pope, C.L. Burley, R.H. Thomas: Aircraft system noise shielding prediction with a Kirchhoff integral method. In: 23rd AIAA/CEAS Aeroacoustics Conference, AIAA 2017-3196, June 2017. [Google Scholar]
  21. J.J. Bowman, T.B.A. Senior, P.L.E. Uslenghi: Electromagnetic and acoustics scattering by simple shapes. North Holland Publishing Company, Amsterdam, 1969. [Google Scholar]
  22. D. Lockard: A comparison of Ffowcs Williams-Hawkings solvers for airframe noise applications. In: AIAA paper 2002-2580, 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, Breckenridge, Colorado, June 2002. [Google Scholar]
  23. A.P. Dowling, J.E. Ffowcs Williams: Sound and sources of sound, chap. 9. Horwood Publishing, Westergate, 1983, pp. 207–208. [Google Scholar]
  24. Ph. Delorme, P. Mazet, Ch. Peyret, Y. Ventribout: Computational aeroacoustics applications based on a discontinuous Galerkin method. Comptes Rendus Mécanique 333 (2005) 676–682. [CrossRef] [Google Scholar]
  25. Ch. Peyret: A full high order method for computational aeroacoustics. In: 23rd AIAA/CEAS Aeroacoustics Conference, Denver, Colorado, June 2017. [Google Scholar]
  26. M. Huet, F. Gand, G. Rahier: Simulation of isolated and installed jet noise at Mach=0.9: influence of numerical mesh and physical insights. Flow, Turbulence and Combustion, published on line: 31 August 2023. [Google Scholar]
  27. J. Prieur, G. Rahier: Aeroacoustic integral methods, formulation and efficient numerical implementation. Aerospace Science and Technology 5, 7 (2001) 457–468. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.