Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Virtual acoustics
Article Number 20
Number of page(s) 10
DOI https://doi.org/10.1051/aacus/2024012
Published online 07 May 2024
  1. M. Kleiner, B.I. Dalenbäck, P. Svensson: Auralization – an overview. Journal of the Audio Engineering Society 41, 11 (1993) 861–875. https://www.aes.org/e-lib/browse.cfm?elib=6976. [Google Scholar]
  2. D. Thompson, C. Jones: Sound radiation from a vibrating railway wheel. Journal of Sound Vibration 253, 2 (2002) 401–419. [CrossRef] [Google Scholar]
  3. D.J. Thompson: Railway noise and vibration: mechanisms, modelling and means of control, 1st edn. Elsevier, Amsterdam, Boston, 2009. [Google Scholar]
  4. J. Theyssen, A. Pieringer: Towards auralization of pass-by noise from railway wheels: sensitivity of the lateral contact position, in: Proceedings of the 10th Convention of the European Acoustics Association (Forum Acusticum), 2023, pp. 5621–5628. [Google Scholar]
  5. E. Bongini, S. Molla, P.E. Gautier, D. Habault, P.O. Mattéi, F. Poisson: Synthesis of noise of operating vehicles: development within SILENCE of a tool with listening features, in: B. Schulte-Werning, D. Thompson, P.-E. Gautier, C. Hanson, B. Hemsworth, J. Nelson, T. Maeda, P. de Vos, Eds., Noise and vibration mitigation for rail transportation systems, Notes on numerical fluid mechanics and multidisciplinary design. Springer, Berlin, Heidelberg, 2008, pp. 320–326. [CrossRef] [Google Scholar]
  6. D. Thompson, B. Hemsworth, N. Vincent: Experimental validation of the twins prediction program for rolling noise, part 1: description of the model and method. Journal of Sound and Vibration 193, 1 (1996) 123–135. [CrossRef] [Google Scholar]
  7. R. Pieren, K. Heutschi, J.M. Wunderli, M. Snellen, D.G. Simons: Auralization of railway noise: emission synthesis of rolling and impact noise. Applied Acoustics 127 (2017) 34–45. [CrossRef] [Google Scholar]
  8. The European Commission: COMMISSION DIRECTIVE (EU) 2015/ 996 – of 19 May 2015 – establishing common noise assessment methods according to Directive 2002/49/EC of the European Parliament and of the Council. Official Journal of the European Union L 168, 1 (2015) 1–823. [Google Scholar]
  9. A. Kacem, J. Maillard, N. Martin, B. Faure: Caractérisation et auralisation de la contribution du rail dans le bruit ferroviaire, in: 14ème Congrès Français d’Acoustique, Le Havre, France, 23–27 Avril, 2018. [Google Scholar]
  10. J. Maillard, A. Kacem, N. Martin, B. Faure: Physically-based auralization of railway rolling noise, in: Proceedings of the 23rd International Congress on Acoustics, Deutsche Gesellschaft für Akustik e.V. (DEGA), Aachen, 2019, pp. 1667–1674. [Google Scholar]
  11. R. Pieren, F. Georgiou, G. Squicciarini, K. Heutschi, D. Thompson: VR demonstration of railway noise mitigation using auralised train pass-bys, in: Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023, European Acoustics Association, Turin, Italy, 2024, pp. 5629–5635. [Google Scholar]
  12. J. Theyssen, T. Deppisch, A. Pieringer, W. Kropp: On the efficient simulation of pass-by noise signals from railway wheels. Journal of Sound and Vibration 564 (2023) 117889. [CrossRef] [Google Scholar]
  13. H. Fastl, E. Zwicker: Psychoacoustics: facts and models. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. [CrossRef] [Google Scholar]
  14. J. Theyssen: Simulating rolling noise on ballasted and slab tracks: vibration, radiation, and pass-by signals. Doctoral Thesis. Chalmers University of Technology, Gothenburg, Sweden, 2022. [Google Scholar]
  15. A. Pieringer, W. Kropp, D.J. Thompson: Investigation of the dynamic contact filter effect in vertical wheel/rail interaction using a 2D and a 3D non-Hertzian contact model. Wear 271, 1 (2011) 328–338. [Google Scholar]
  16. S. Finnveden, M. Fraggstedt: Waveguide finite elements for curved structures. Journal of Sound Vibration 312, 4–5 (2008) 644–671. [CrossRef] [Google Scholar]
  17. P. Sabiniarz, W. Kropp: A waveguide finite element aided analysis of the wave field on a stationary tyre, not in contact with the ground. Journal of Sound Vibration 329, 15 (2010) 3041–3064. [CrossRef] [Google Scholar]
  18. F. Fabre, J.S. Theyssen, A. Pieringer, W. Kropp: Sound radiation from railway wheels including ground reflections: a half-space formulation for the fourier boundary element method. Journal of Sound Vibration 493 (2021) 115822. [CrossRef] [Google Scholar]
  19. C.-M. Nilsson, C. Jones, D. Thompson, J. Ryue: A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails. Journal of Sound Vibration 321, 3–5 (2009) 813–836. [CrossRef] [Google Scholar]
  20. A. Pieringer: Time-domain modelling of high-frequency wheel/rail interaction. Doctoral Thesis. Chalmers University of Technology, Gothenburg, Sweden, 2011. [Google Scholar]
  21. A. Pieringer, W. Kropp, J.C.O. Nielsen: The influence of contact modelling on simulated wheel/rail interaction due to wheel flats. Wear 314, 1 (2014) 273–281. [CrossRef] [Google Scholar]
  22. J.J. Kalker: Three-dimensional elastic bodies in rolling contact, vol. 2 of solid mechanics and its applications. Springer, Netherlands, Dordrecht, 1990. [Google Scholar]
  23. J. Nielsen, A. Igeland: Vertical dynamic interaction between train and track influence of wheel and track imperfections. Journal of Sound Vibration 187, 5 (1995) 825–839. [CrossRef] [Google Scholar]
  24. A. Pieringer, W. Kropp: Model-based estimation of rail roughness from axle box acceleration. Applied Acoustics 193 (2022) 108760. [CrossRef] [Google Scholar]
  25. D. Thompson, G. Squicciarini, J. Zhang, I. Lopez Arteaga, E. Zea, M. Dittrich, E. Jansen, K. Arcas, E. Cierco, F.X. Magrans, A. Malkoun, E. Iturritxa, A. Guiral, M. Stangl, G. Schleinzer, B. Martin Lopez, C. Chaufour, J. Wandell: Assessment of measurement-based methods for separating wheel and track contributions to railway rolling noise. Applied Acoustics 140 (2018) 48–62. [CrossRef] [Google Scholar]
  26. V. Delavaud: Modelisation temporelle de l’interaction roue/rail pour une application au bruit de roulement ferroviaire, Doctoral Thesis. ENSTA ParisTech, 2011. [Google Scholar]
  27. ISO 3095:2013(E): Acoustics – Railway applications – Measurement of noise emitted by railbound vehicles, International Organization for Standardization, 2013. [Google Scholar]
  28. A.H.W.M. Kuijpers, G. Verbeek, J.W. Verheij: An improved acoustic Fourier boundary element method formulation using fast Fourier transform integration. Journal of the Acoustical Society of America 102, 3 (1997) 1394–1401. [CrossRef] [Google Scholar]
  29. G. Cheng, Y. He, J. Han, X. Sheng, D. Thompson: An investigation into the effects of modelling assumptions on sound power radiated from a high-speed train wheelset. Journal of Sound Vibration 495 (2021) 115910. [CrossRef] [Google Scholar]
  30. J. Theyssen: Complementary files to the publication “Towards auralization of pass-by noise from railway wheels: sensitivity of the lateral contact position”. Available at http://www.ta.chalmers.se/research/vibroacoustic-group/audio-examples/fa2023a/. [Google Scholar]
  31. ISO 532–1:2017(E): Acoustics – Methods for calculating loudness – Part 1: Zwicker Method, International Organization for Standardization, 2017. [Google Scholar]
  32. DIN 45692: Messtechnische Simulation der Hörempfindung Schärfe [Measurement technique for the simulation of the auditory sensation of sharpness], German Institute for Standardization, 2009. [Google Scholar]
  33. J. Theyssen: Complementary files to the publication “The radiation from railway wheel modes and their effect on loudness, sharpness, and equivalent pressure level”. Available at http://www.ta.chalmers.se/research/vibroacoustic-group/audio-examples/aa-2024a/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.