Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 21
Number of page(s) 11
Section Scientific Article
DOI https://doi.org/10.1051/aacus/2024014
Published online 07 June 2024
  1. M.A. Mironov, V.V. Pislyakov: One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero. Acoustical Physics 48 (2002) 347–352. [CrossRef] [Google Scholar]
  2. O. Guasch, M. Arnela, P. Sánchez-Martín: Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations. Journal of Sound and Vibration 395 (2017) 65–79. [CrossRef] [Google Scholar]
  3. O. Guasch, P. Sánchez-Martín, D. Ghilardi: Application of the transfer matrix approximation for wave propagation in a metafluid representing an acoustic black hole duct termination. Applied Mathematical Modelling 77 (2020) 1881–1893. [CrossRef] [Google Scholar]
  4. J.P. Hollkamp, F. Semperlotti: Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. Journal of Sound and Vibration 465 (2020) 115035. [CrossRef] [Google Scholar]
  5. A.A. El-Ouahabi, V.V. Krylov, D. O’Boy: Experimental investigation of the acoustic black hole for sound absorption in air. In: Proceedings of 22nd International Congress on Sound and Vibration, July 12–16, Florence, Italy, 2015. [Google Scholar]
  6. A.A. El-Ouahabi, V.V. Krylov, D. O’Boy: Investigation of the acoustic black hole termination for sound waves propagating in cylindrical waveguides. In: Proceedings of the International Conference Inter-Noise 2015, August 9–12, San Francisco, USA, 2015. [Google Scholar]
  7. M.A. Mironov, V.V. Pislyakov: One-dimensional sonic black holes: Exact analytical solution and experiments. Journal of Sound and Vibration 473 (2020) 115223. [CrossRef] [Google Scholar]
  8. Y. Mi, W. Zhai, L. Cheng, Ch Xi, X. Yu: Wave trapping by acoustic black hole: Simultaneous reduction of sound reflection and transmission. Applied Physics Letter 118 (2021) 114101. [CrossRef] [Google Scholar]
  9. N. Sharma, O. Umnova, A. Moorhouse: Low frequency sound absorption through a muffler with metamaterial lining. In: 24th International Congress on Sound and Vibration 2017 (ICSV 24), July 23–27, London, UK, 2017. [Google Scholar]
  10. X. Zhang, L. Cheng: Broadband and low frequency sound absorption by sonic black holes with micro-perforated boundaries. Journal of Sound and Vibration 512 (2021) 116401. [CrossRef] [Google Scholar]
  11. X. Liang, H. Liang, J. Chu, W. Wang, N. Li, Z. Yang, G. Zhou, N. Gao, C. Hu, Z. Zhou: A modified sonic black hole structure for improving and broadening sound absorption. Applied Acoustics 210 (2023) 109440. [CrossRef] [Google Scholar]
  12. Y. Mi, L. Cheng, W. Zhai, X. Yu: Broadband low-frequency sound attenuation in duct with embedded periodic sonic black holes. Journal of Sound and Vibration 536 (2022) 117138. [CrossRef] [Google Scholar]
  13. G. Bezançon, O. Doutres, O. Umnova, P. Leclaire, T. Dupont: Thin metamaterial using acoustic black hole profiles for broadband sound absorption. Applied Acoustics 216 (2024) 109744. [CrossRef] [Google Scholar]
  14. A. Mousavi, M. Berggren, E. Wadbro: How the waveguide acoustic black hole works: A study of possible damping mechanisms. Journal of the Acoustical Society of America 151 (2022) 4279–4290. [CrossRef] [PubMed] [Google Scholar]
  15. M. Červenka, M. Bednařík: On the role of resonance and thermoviscous losses in an implementation of “acoustic black hole” for sound absorption in air. Wave Motion 114 (2022) 103039. [Google Scholar]
  16. O. Umnova, D. Brooke, P. Leclaire, T. Dupont: Multiple resonances in lossy acoustic black holes – Theory and experiment. Journal of Sound and Vibration 543 (2023) 117377. [CrossRef] [Google Scholar]
  17. N. Jiménez, V. Romero-García, V. Pagneux, J.P. Groby: Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports 7 (2017) 13595. [Google Scholar]
  18. M. Červenka, M. Bednařík: Numerical study of the behavior of rectangular acoustic black holes for sound absorption in air. Wave Motion 123 (2023) 103230. [Google Scholar]
  19. X. Yu, Y. Mi, W. Zhai, L. Cheng: Principles of progressive slow-sound and critical coupling condition in broadband sonic black hole absorber. Journal of the Acoustical Society of America 154 (2023) 2988–3003. [CrossRef] [PubMed] [Google Scholar]
  20. M. Bednařík, M. Červenka: A sonic black hole of a rectangular cross-section. Applied Mathematical Modelling 125 (2024) 529–543. [CrossRef] [Google Scholar]
  21. V. Hruška, J.-P. Groby, M. Bednařík: Complex frequency analysis and source of losses in rectangular sonic black holes. Journal of Sound and Vibration 571 (2024) 118107. [CrossRef] [Google Scholar]
  22. T. Bravo, C. Maury: Broadband sound attenuation and absorption by duct silencers based on the acoustic black hole effect: Simulations and experiments. Journal of Sound and Vibration 561 (2023) 117825. [CrossRef] [Google Scholar]
  23. G. Serra, O. Guasch, M. Arnela, D. Miralles: Optimization of the profile and distribution of absorption material in sonic black holes. Mechanical Systems and Signal Processing 202 (2023) 110707. [CrossRef] [Google Scholar]
  24. A. Mousavi, M. Berggren, L. Hägg, E. Wadbro: Topology optimization of a waveguide acoustic black hole for enhanced wave focusing. Journal of the Acoustical Society of America 155 (2024) 742–756. [CrossRef] [PubMed] [Google Scholar]
  25. J.-F. Allard, N. Atalla: Propagation of sound in porous media: Modelling sound absorbing materials. Wiley, 2009. [CrossRef] [Google Scholar]
  26. T.G. Zielinski, R. Venegas, C. Perrot, M. Červenka, F. Chevillotte, K. Attenborough: Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media. Journal of Sound and Vibration 483 (2020) 115441. [CrossRef] [Google Scholar]
  27. M. Stinson: The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. Journal of the Acoustical Society America 89 (1991) 550–558. [CrossRef] [Google Scholar]
  28. M. Červenka, M. Bednařík: Optimized compact wideband reactive silencers with annular resonators. Journal of Sound and Vibration 484 (2020) 15497. [Google Scholar]
  29. T. Bravo, C. Maury: Causally-guided acoustic optimization of single-layer rigidly-backed micro-perforated partitions: Theory. Journal of Sound and Vibration 520 (2021) 116634. [Google Scholar]
  30. Global Optimization Toolbox User’s Guide: MATLAB R2020a. The MathWorks Inc., 2020. [Google Scholar]
  31. M. Yang, S. Chen, C. Fu, P. Sheng: Optimal sound-absorbing structures. Materials Horizons 4 (2017) 673–680. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.