Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Vibroacoustics
Article Number 54
Number of page(s) 9
DOI https://doi.org/10.1051/aacus/2024046
Published online 18 October 2024
  1. Y. Imashiro, S. Hasegawa, T. Matsumoto: Melamine resin foam, United States Patent 5413853, 1995. [Google Scholar]
  2. J. Plateau: Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, vol. 2, Gauthier-Villars, Paris, 1873. [Google Scholar]
  3. V. Magnenet, R. Rahouadj, P. Bacher, C. Cunat: Inelastic constitutive relations for foamed materials: a statistical approach and its application to open-cell melamine, Mechanics of Materials 40, 9 (2008) 673–684. [CrossRef] [Google Scholar]
  4. K.A. Brakke: The surface evolver, Experimental Mathematics 1, 2 (1992) 141–165. [CrossRef] [Google Scholar]
  5. D.L. Johnson, J. Koplik, R. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics 176 (1987) 379–402. [Google Scholar]
  6. Y. Champoux, J.-F. Allard: Dynamic tortuosity and bulk modulus in air-saturated porous media, Journal of Applied Physics 70, 4 (1991) 1975–1979. [CrossRef] [Google Scholar]
  7. D. Lafarge, P. Lemarinier, J.-F. Allard, V. Tarnow: Dynamic compressibility of air in porous structures at audible frequencies, Journal of the Acoustical Society of America 102, 4 (1997) 1995–2006. [CrossRef] [Google Scholar]
  8. R. Panneton, X. Olny: Acoustical determination of the parameters governing viscous dissipation in porous media, Journal of the Acoustical Society of America 119, 4 (2006) 2027–2040. [CrossRef] [PubMed] [Google Scholar]
  9. X. Olny, R. Panneton: Acoustical determination of the parameters governing thermal dissipation in porous media, Journal of the Acoustical Society of America 123, 2 (2008) 814–824. [CrossRef] [PubMed] [Google Scholar]
  10. H. Utsuno, T. Tanaka, T. Fujikawa, A.F. Seybert: Transfer function method for measuring characteristic impedance and propagation constant of porous materials, Journal of the Acoustical Society of America 86, 2 (1989) 637–643. [CrossRef] [Google Scholar]
  11. N. Geebelen, L. Boeckx, G. Ve, W. Lauriks, J.F. Allard, O. Dazel: Measurement of the rigidity coefficients of a melamine foam, Acta Acustica united with Acustica 93 (2007) 783–788. [Google Scholar]
  12. P. Göransson, R. Guastavino, N.E. Hörlin: Measurement and inverse estimation of 3D anisotropic flow resistivity for porous materials, Journal of Sound and Vibration 327, 3–5 (2009) 354–367. [CrossRef] [Google Scholar]
  13. C. Perrot, F. Chevillotte, M. Tan Hoang, G. Bonnet, F.-X. Bécot, L. Gautron, A. Duval: Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations, Journal of Applied Physics 111, 1 (2012) 14911. [CrossRef] [Google Scholar]
  14. T.G. Zieliński, R. Venegas, C. Perrot, M. Červenka, F. Chevillotte, K. Attenborough: Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, Journal of Sound and Vibration 483 (2020) 115441. [CrossRef] [Google Scholar]
  15. W. Thomson: LXIII. On the division of space with minimum partitional area, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 24, 151 (1887) 503–514. [CrossRef] [Google Scholar]
  16. N.J. Mills: The wet Kelvin model for air flow through open-cell polyurethane foams, Journal of Materials Science 40, 22 (2005) 5845–5851. [CrossRef] [Google Scholar]
  17. V. Langlois, A. Kaddami, O. Pitois, C. Perrot: Acoustics of monodisperse open-cell foam: an experimental and numerical parametric study, Journal of the Acoustical Society of America 148, 3 (2020) 1767–1778. [CrossRef] [PubMed] [Google Scholar]
  18. B.P. Semeniuk, E. Lundberg, P. Göransson: Acoustics modelling of open-cell foam materials from microstructure and constitutive properties, Journal of the Acoustical Society of America 149, 3 (2021) 2016–2026. [CrossRef] [PubMed] [Google Scholar]
  19. W. Drenckhan, S. Hutzler: Structure and energy of liquid foams, Advances in Colloid and Interface Science 224 (2015) 1–16. [CrossRef] [PubMed] [Google Scholar]
  20. Y. Salissou, R. Panneton: Pressure/mass method to measure open porosity of porous solids, Journal of Applied Physics 101, 12 (2007) 124913. [CrossRef] [Google Scholar]
  21. M. Avellaneda, S. Torquato: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media, Physics of Fluids A: Fluid Dynamics 3, 11 (1991) 2529–2540. [CrossRef] [Google Scholar]
  22. N. Martys, E.J. Garboczi: Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media, Physical Review: B Condensed Matter 46, 10 (1992) 6080–6090. [CrossRef] [PubMed] [Google Scholar]
  23. C.T. Nguyen, V. Langlois, J. Guilleminot, F. Detrez, A. Duval, M. Bornert, P. Aimedieu, C. Perrot: Polydisperse solid foams: multiscale modeling and simulations of elasto-acoustic properties including thin membrane effects, International Journal of Solids and Structures 249 (2022) 111684. [CrossRef] [Google Scholar]
  24. C.T. Nguyen, V. Langlois, J. Guilleminot, A. Duval, C. Perrot: Effect of pore size polydispersity on the acoustic properties of high-porosity solid foams, Physics of Fluids 36, 4 (2024) 047101. [CrossRef] [Google Scholar]
  25. K.V. Horoshenkov, J.-P. Groby, O. Dazel: Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths, Journal of the Acoustical Society of America 139, 5 (2016) 2463–2474. [CrossRef] [PubMed] [Google Scholar]
  26. K.V. Horoshenkov, A. Hurrell, J.-P. Groby: A three-parameter analytical model for the acoustical properties of porous media, Journal of the Acoustical Society of America 145, 4 (2019) 2512–2517. [CrossRef] [PubMed] [Google Scholar]
  27. O. Doutres, N. Atalla, K. Dong: Effect of the microstructure closed pore content on the acoustic behavior of polyurethane foams, Journal of Applied Physics 110, 6 (2011) 64901. [CrossRef] [Google Scholar]
  28. O. Doutres, N. Atalla, K. Dong: A semi-phenomenological model to predict the acoustic behavior of fully and partially reticulated polyurethane foams, Journal of Applied Physics 113, 5 (2013) 54901. [CrossRef] [Google Scholar]
  29. N. Kino, G. Nakano, Y. Suzuki: Non-acoustical and acoustical properties of reticulated and partially reticulated polyurethane foams, Applied Acoustics 73, 2 (2012) 95–108. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.