Issue |
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
|
|
---|---|---|
Article Number | 53 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/aacus/2024045 | |
Published online | 22 October 2024 |
- IEC: Sound system equipment – Part 21: acoustical (output-based) measurements. 60268-21, International Standard, 2018. [Google Scholar]
- IEC: Sound system equipment – Part 4: microphones. 60268-4, International Standard, 2018. [Google Scholar]
- AES: AES recommended practice for professional audio – Subjective evaluation of loudspeakers. 20-1996. AES Standard, 2008. [Google Scholar]
- A. Brauchler, S. Gonzalez, M. Vierneisel, P. Ziegler, F. Antonacci, A. Sarti, P. Eberhard: Model-predicted geometry variations to compensate material variability in the design of classical guitars, Nature Scientific Reports 13 (2023) 12766. [CrossRef] [Google Scholar]
- S. Gonzalez, D. Salvi, D. Baeza, F. Antonacci, A. Sarti: A data-driven approach to violin making, Nature Scientific Reports 11 (2021) 9455. [CrossRef] [Google Scholar]
- A. Steffenrem, P. Saranpää, S. Lundqvist, T. Skrøppa: Variation in wood properties among five full-sib families of Norway spruce (Picea abies), Annals of Forest Science 64, 8 (2007) 799–806. [CrossRef] [EDP Sciences] [Google Scholar]
- J.R. Moore, A.J. Lyon, G.J. Searles, S.A. Lehneke, D.J. Ridley-Ellis: Within- and between-stand variation in selected properties of sitka spruce sawn timber in the United Kingdom: implications for segregation and grade recovery, Annals of Forest Science 70 (2013) 403–415. [CrossRef] [Google Scholar]
- V. Gryc, P. Horácek: Variability in density of spruce (Picea abies [L.] Karst.) wood with the presence of reaction wood, Journal of Forest Science 53, 3 (2007) 129–137. [CrossRef] [Google Scholar]
- D. Boak, R. Johnston: Martin guitars: a technical reference, Hal Leonard Books, New York, 2009. [Google Scholar]
- E. Whitford, D. Vinopal, D. Erlewine: Gibson’s fabulous flat-top guitars, Backbeat, Lanham, Maryland, 2009. [Google Scholar]
- T. Gore, G. Gilet: Contemporary acoustic guitar design and build, Trevor Gore, , Australia, 2011. [Google Scholar]
- R. Viala, V. Placet, S. Cogan: Model-based evidence of the dominance of the guitar brace design over material and climatic variability for dynamic behaviours, Applied Acoustics 182 (2021) 108275. [CrossRef] [Google Scholar]
- M. Boven: Dynamic response optimization of an acoustic guitar, PhD dissertation, TU Delft, Delft, Netherlands, 2017. [Google Scholar]
- D. Salvi, S. Gonzalez, F. Antonacci, A. Sarti: Modal analysis of free archtop guitar top plates, Journal of the Acoustical Society of America 150, 2 (2021) 1505–1513. [CrossRef] [PubMed] [Google Scholar]
- T. Duerinck, J. Segers, E. Skrodzka, G. Verberkmoes, M. Leman, W. Van Paepegem, M. Kersemans: Experimental comparison of various excitation and acquisition techniques for modal analysis of violins, Applied Acoustics 177 (2021) 107942. [CrossRef] [Google Scholar]
- L. Ausiello, L. Yule, G. Squicciarini, C. Barlow: Guitar soundboard measurements for repeatable acoustic performance manufacturing, in: Proceedings Reproduced Sound 2018, Bristol, UK, 27–29 November, 2018. [Google Scholar]
- L. Ausiello, V. Hockey: Quantitative measurements to enhance performance of acoustic musical instruments and improve manufacturing, Acoustic Bulletin 47, 2 (2021) 30–45. [Google Scholar]
- A. Farina: Simultaneous measurement of impulse response and distortion with a swept-sine technique, in: Proceedings of the AES 108 Convention, Paris, France, 19–22 February, Audio Engineering Society, 2000, pp. 1–24. [Google Scholar]
- A. Farina: Advancements in impulse response measurements by sine sweeps, Proceedings of the AES 122 Convention, Vienna, Austria, 5–8 May, Audio Engineering Society, pp. 1–21. [Google Scholar]
- S. Carcagno, R. Bucknall, J. Woodhouse, C. Fritz, C.J. Plack: Effect of back wood choice on the perceived quality of steel-string acoustic guitars, Journal of the Acoustical Society of America 144, 6 (2018) 3533–3547. [Google Scholar]
- A. Brauchler, P. Ziegler, P. Eberhard: An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data, Journal of the Acoustical Society of America 149, 6 (2021) 4450–4462. [CrossRef] [PubMed] [Google Scholar]
- N. Giordano: Mechanical impedance of a piano soundboard, Journal of the Acoustical Society of America 103, 4 (1998) 2128–2133. [CrossRef] [Google Scholar]
- D. Brown, R. Allemang, A. Phillips: Forty years of use and abuse of impact testing: A practical guide to making good FRF measurements, in: J. De Clerck (Ed.), Experimental techniques, rotating machinery, and acoustics, vol. 8, Springer, Cham, 2015, pp. 221–241 [CrossRef] [Google Scholar]
- M.J. Elejabarrieta, A. Ezcurra, C. Santamarıa: Evolution of the vibrational behaviour of a guitar soundboard along successive construction phases by means of the modal analysis technique, Journal of the Acoustical Society of America 108, 1 (2000) 369–378. [CrossRef] [PubMed] [Google Scholar]
- H. Mansour, G. Scavone, V. Freour: A comparison of vibration analysis techniques applied to the Persian setar, in: Proceedings of Acoustics, Nantes, France, 23–27 April, Société Française d'Acoustique, 2012, pp. 1743–1748. [Google Scholar]
- W.G. Halvorsen, D.L. Brown: Impulse technique for structural frequency response testing, Sound and Vibration 63, 1 (1978) S81. [Google Scholar]
- J. Curtin: Measuring violin sound radiation using an impact hammer, Journal of the Acoustical Society of America VSA Papers 22, 1 (2009) 186–209. [Google Scholar]
- P. Guidorzi, L. Barbaresi, D. D’Orazio, M. Garai: Impulse responses measured with MLS or swept-sine signals applied to architectural acoustics: an in-depth analysis of the two methods and some case studies of measurements inside theaters, Energy Procedia 78 (2015) 1611–1616. [CrossRef] [Google Scholar]
- F. Policardi: Mls and sine-sweep technique comparison in room-acoustic measurements, Elektrotehniški Vestnik/Electrotechnical Review 78, 3 (2011) 91–95. [Google Scholar]
- M. Garai, F. Morandi, D. D’Orazio, S. De Cesaris, L. Loreti: Acoustic measurements in eleven Italian opera houses: correlations between room criteria and considerations on the local evolution of a typology, Buildings and Environment 94 (2015) 900–912. [CrossRef] [Google Scholar]
- M. Pyrkosz, C. Van Karsen: Comparative modal tests of a violin, Experimental Techniques 37 (2013) 47–62. [CrossRef] [Google Scholar]
- L. Ausiello, G. Nicoletti: Fem simulations and experimental validation of frequency response prediction for acoustic soundboards, in: Proceedings of Reproduced Sound, Bristol, UK, 16–18 November, 2021. [Google Scholar]
- N. Thiele: Loudspeakers in vented boxes: part 1, Journal of the Audio Engineering Society 19, 5 (1971) 382–392. [Google Scholar]
- N. Thiele: Loudspeakers in vented boxes: part 2, Journal of the Audio Engineering Society 19, 6 (1971) 471–483. [Google Scholar]
- R.H. Small: Vented-box loudspeaker systems – part 1: small-signal analysis, Journal of the Audio Engineering Society 21, 5 (1973) 363–372. [Google Scholar]
- D. Ponteggia: Loudspeaker electrical impedance measurements methods: a brief review, in: International Conference on Noise and Vibration Engineering, Los Angeles, USA, 2006, pp. 1615–1626. [Google Scholar]
- W. Klippel: Assessment of voice coil peak displacement Xmax, in: Proceedings of the AES 112 Convention, Dresden, Germany, 10–13 May, AES, 2002, pp. 307–324. [Google Scholar]
- M. Dodd, W. Klippel, J. Oclee-Brown: Voice coil impedance as a function of frequency and displacement, in: Proceedings of the AES 117th Convention, San Francisco, CA, USA, 28–31 October, Audio Engineering Society, 2004, pp. 1–19. [Google Scholar]
- M. Ducceschi, S. Duran, H. Tahvanainen, L. Ausiello: A method to estimate the rectangular orthotropic plate elastic constants using least-squares and Chladni patterns, Applied Acoustics 220 (2024) 109949. [CrossRef] [Google Scholar]
- M. Ducceschi, C. Touzé, S. Bilbao, C.J. Webb: Nonlinear dynamics of rectangular plates: Investigation of modal interaction in free and forced vibrations, Acta Mechanica 225, 1 (2014) 213–232. [CrossRef] [Google Scholar]
- A. Prato, A. Schiavi, F. Casassa: A modal approach for reverberation time measurements in non-diffuse sound field, in: 23nd International Congress of Sound and Vibration (ICSV), Athens, Greece, 10–14 July, 2016. [Google Scholar]
- J. Lazar, G.S. Kubota: Analysis of a vented-box loudspeaker system via the impedance function, in: 147th Audio Engineering Society Convention 2019, New York, New York, USA, 16–19 October, 2019. [Google Scholar]
- R. Magalotti, K. Bugaj, A. Said: Assessing the acoustic load on a loudspeaker driver through electrical impedance measurements, in: 4th International Conference on Acoustics & Sound Reinforcement (ASR 2024), Le Mans, France, 22–26 January, 2024. [Google Scholar]
- K.G. McConnell: Vibration testing: theory and practice, John Wiley & Sons, Hoboken, New Jersey, 1995. [Google Scholar]
- P. Varoto, L. de Oliveira: Interaction between a vibration exciter and the structure under test, Sound and Vibration 36 (2002) 20–26. [Google Scholar]
- G. Caldersmith: Guitar as a reflex enclosure, Journal of the Acoustical Society of America 63, 5 (1978) 1566–1575. [CrossRef] [Google Scholar]
- B. Katz: Mastering audio: the art and the science, Elsevier/Focal Press, Waltham, Massachusetts, 2007. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.