Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
Article Number 74
Number of page(s) 16
DOI https://doi.org/10.1051/aacus/2024075
Published online 24 December 2024
  1. T. Idogawa, M. Shimizu, M. Iwaki: Acoustical behaviors of an oboe and a soprano saxophone artificially blown. Some problems on the theory of dynamical systems in applied science, in: Proceedings of the Institute for Mathematical Analysis, Institute for Mathematical Analysis, Kyoto University, 1992, pp. 71–93. [Google Scholar]
  2. T. Idogawa, T. Kobata, K. Komuro, M. Iwaki: Nonlinear vibrations in the air column of a clarinet artificially blown. Journal of the Acoustical Society of America 93, 1 (1993) 540–551. [CrossRef] [Google Scholar]
  3. K.Y. Takahashi, H.A. Kodama, A. Nakajima, T.A. Tachibana: Numerical study on multi-stable oscillations of woodwind single-reed instruments. Acta Acustica united with Acustica 95, 6 (2009) 1123–1139. [CrossRef] [Google Scholar]
  4. J. Bocanegra, D. Borelli: Review of acoustic hysteresis in flute-like instruments, in: Proceedings of 26th International Congress on Sound and Vibration, Canada, Montreal, 7–11 July, 2019. [Google Scholar]
  5. V. Fréour, L. Guillot, H. Masuda, E. Tominaga, Y. Tohgi, C. Vergez, B. Cochelin: Numerical continuation of a physical model of brass instruments: Application to trumpet comparisons. Journal of the Acoustical Society of America 148, 2 (2020) 748–758. [CrossRef] [PubMed] [Google Scholar]
  6. J.J. Jiang, Y. Zhang: Chaotic vibration induced by turbulent noise in a two-mass model of vocal folds. Journal of the Acoustical Society of America 112, 5 (2002) 2127–2133. [CrossRef] [PubMed] [Google Scholar]
  7. R.T. Schumacher, J. Woodhouse: The transient behaviour of models of bowed‐string motion. Chaos: An Interdisciplinary Journal of Nonlinear Science 5, 3 (1995) 509–523. [CrossRef] [PubMed] [Google Scholar]
  8. T.A. Wilson, G.S. Beavers: Operating modes of the clarinet. Journal of the Acoustical Society of America 56, 2 (1974) 653–658. [CrossRef] [Google Scholar]
  9. N.H. Fletcher: Nonlinear interactions in organ flue pipes. Journal of the Acoustical Society of America 56, 2 (1974) 645–652. [CrossRef] [Google Scholar]
  10. B. Lawergren: On the motion of bowed violin strings. Acta Acustica united with Acustica 44, 3 (1980) 194–206. [Google Scholar]
  11. C. Maganza, R. Caussé, F. Laloë: Bifurcations, period doublings and chaos in clarinetlike systems. Europhysics Letters 1, 6 (1986) 295. [CrossRef] [Google Scholar]
  12. J.P. Dalmont, J. Gilbert, J. Kergomard: Reed instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy. Acta Acustica united with Acustica 86, 4 (2000) 671–684. [Google Scholar]
  13. J. Gilbert, S. Maugeais, C. Vergez: Minimal blowing pressure allowing periodic oscillations in a simplified reed musical instrument model: Bouasse-Benade prescription assessed through numerical continuation. Acta Acustica 4, 6 (2020) 27. [CrossRef] [EDP Sciences] [Google Scholar]
  14. S. Terrien, C. Vergez, B. Fabre: Flute-like musical instruments: a toy model investigated through numerical continuation. Journal of Sound and Vibration 332, 15 (2013) 3833–3848. [CrossRef] [Google Scholar]
  15. R. Mattéoli, J. Gilbert, S. Terrien, J.-P. Dalmont, C. Vergez, S. Maugeais, E. Brasseur: Diversity of ghost notes in tubas, euphoniums and saxhorns. Acta Acustica 6 (2022) 32. [CrossRef] [EDP Sciences] [Google Scholar]
  16. E. Gourc, C. Vergez, P.-O. Mattei, S. Missoum: Nonlinear dynamics of the wolf tone production. Journal of Sound and Vibration 516 (2022) 116463. [CrossRef] [Google Scholar]
  17. S. Terrien, R. Blandin, C. Vergez, B. Fabre: Regime change thresholds in recorder-like instruments: influence of the mouth pressure dynamics. Acta Acustica united with Acustica 101, 2 (2015) 300–316. [CrossRef] [Google Scholar]
  18. S. Terrien, B. Bergeot, C. Vergez: Dynamic basins of attraction in a toy-model of reed musical instruments, in: Proceedings of Forum Acusticum, Turin, Italy, 11–15 September, 2023. [Google Scholar]
  19. B. Bergeot, A. Almeida, C. Vergez, B. Gazengel: Measurement of attack transients in a clarinet driven by a ramp-like varying pressure, in: Acoustics 2012, April, Nantes, France, 2012. https://hal.science/hal-00810986. [Google Scholar]
  20. B. Bergeot, A. Almeida, C. Vergez, B. Gazengel: Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure. Nonlinear Dynamics 73 (2013) 521–534. [Google Scholar]
  21. A. Ernoult, B. Fabre: Temporal characterization of experimental recorder attack transients. Journal of the Acoustical Society of America 141, 1 (2017) 383–394. [CrossRef] [PubMed] [Google Scholar]
  22. S. Logie, S. Bilbao, J. Chick, M. Campbell: The influence of transients on the perceived playability of brass instruments, in: Proceedings of 20th International Symposium on Music Acoustics, Sydney and Katoomba, 26–27 August, 2010. [Google Scholar]
  23. K. Guettler, A. Askenfelt: Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks. The Journal of the Acoustical Society of America 101, 5 (1997) 2903–2913. [CrossRef] [Google Scholar]
  24. L. Velut, C. Vergez, J. Gilbert, M. Djahanbani: How well can linear stability analysis predict the behaviour of an outward-striking valve brass instrument model? Acta Acustica united with Acustica 103, 1 (2017) 132–148. [CrossRef] [Google Scholar]
  25. A. Couineaux, F. Ablitzer, F. Gautier: Minimal physical model of the cristal Baschet. Acta Acustica 7 (2023) 49. [CrossRef] [EDP Sciences] [Google Scholar]
  26. B. Bergeot, S. Terrien, C. Vergez: Predicting transient dynamics in a model of reed musical instrument with slowly time-varying control parameter. Chaos: An Interdisciplinary Journal of Nonlinear Science 34, 7 (2024) 073146. [CrossRef] [PubMed] [Google Scholar]
  27. T. Colinot, C. Vergez, P. Guillemain, J.-B. Doc: Multistability of saxophone oscillation regimes and its influence on sound production. Acta Acustica 5 (2021) 33. [CrossRef] [EDP Sciences] [Google Scholar]
  28. M. Castellengo: Acoustical analysis of initial transients in flute like instruments. Acta Acustica united with Acustica 85, 3 (1999) 387–400. [Google Scholar]
  29. A. Almeida, R. Chow, J. Smith, J. Wolfe: The kinetics and acoustics of fingering and note transitions on the flute. Journal of the Acoustical Society of America 126, 3 (2009) 1521–1529. [CrossRef] [PubMed] [Google Scholar]
  30. A. Almeida, W. Li, E. Schubert, J. Smith, J. Wolfe: Recording and analysing physical control variables used in clarinet playing: A musical instrument performance capture and analysis toolbox (MIPCAT). Frontiers in Signal Processing 3 (2023) 1089366. [CrossRef] [Google Scholar]
  31. P.J. Menck, J. Heitzig, N. Marwan, J. Kurths: How basin stability complements the linear-stability paradigm. Nature Physics 9, 2 (2013) 89–92. [CrossRef] [Google Scholar]
  32. F. Silva, P. Guillemain, J. Kergomard, C. Vergez, V. Debut: Some simulations of the effect of varying excitation parameters on the transients of reed instruments. Proceedings of Meetings on Acoustics 19 (2013) 035058. [CrossRef] [Google Scholar]
  33. B. Cochelin, C. Vergez: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. Journal of Sound and Vibration 324, 1–2 (2009) 243–262. [Google Scholar]
  34. R. Bader: Musical instruments as synchronized systems, in: R. Bader (ed.), Springer handbook of systematic musicology, Springer, Berlin, Heidelberg, 2018, pp. 171–196 [CrossRef] [Google Scholar]
  35. D. Dessi, F. Mastroddi, L. Morino: A fifth-order multiple-scale solution for Hopf bifurcations. Computers & Structures 82, 31–32 (2004) 2723–2731. [CrossRef] [Google Scholar]
  36. T. Colinot, C. Vergez: How to build a MATLAB demonstrator solving dynamical systems in real-time, with audio output and MIDI control. Acta Acustica 7 (2023) 58. [CrossRef] [EDP Sciences] [Google Scholar]
  37. L.F. Shampine, M.W. Reichelt: The matlab ode suite. SIAM Journal on Scientific Computing 18, 1 (1997) 1–22. [CrossRef] [Google Scholar]
  38. S.H. Strogatz: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Addison-Wesley Publication, Reading, MA, 1994. [Google Scholar]
  39. A.H. Nayfeh, B. Balachandran: Applied nonlinear dynamics: analytical, computational, and experimental methods, Wiley-VCH GmbH, Weinheim, Germany, 2008. [Google Scholar]
  40. P. Schultz, P.J. Menck, J. Heitzig, J. Kurths: Potentials and limits to basin stability estimation. New Journal of Physics 19, 2 (2017) 023005. [CrossRef] [Google Scholar]
  41. Y. Che, C. Cheng, Z. Liu, Z.J. Zhang: Fast basin stability estimation for dynamic systems under large perturbations with sequential support vector machine. Physica D: Nonlinear Phenomena 405 (2020) 132381. [CrossRef] [Google Scholar]
  42. K. Siedenburg: Specifying the perceptual relevance of onset transients for musical instrument identification. Journal of the Acoustical Society of America 145, 2 (2019) 1078–1087. [CrossRef] [PubMed] [Google Scholar]
  43. K. Siedenburg, M.R. Schädler, D. Hülsmeier: Modeling the onset advantage in musical instrument recognition. Journal of the Acoustical Society of America 146, 6 (2019) EL523–EL529. [CrossRef] [PubMed] [Google Scholar]
  44. K. Siedenburg, S. McAdams: Four distinctions for the auditory “wastebasket” of timbre. Frontiers in Psychology 8 (2017) 1747. [CrossRef] [PubMed] [Google Scholar]
  45. P.M. Galluzzo: On the playability of stringed instruments, PhD thesis, University of Cambridge, 2004. [Google Scholar]
  46. J.L. Hintze, R.D. Nelson: Violin plots: a box plot-density trace synergism. American Statistician 52, 2 (1998) 181–184. [CrossRef] [Google Scholar]
  47. S. Węglarczyk: Kernel density estimation and its application. ITM Web of Conferences 23 (2018) 00037. [CrossRef] [EDP Sciences] [Google Scholar]
  48. M. Stender, N. Hoffmann: bSTAB: an open-source software for computing the basin stability of multi-stable dynamical systems. Nonlinear Dynamics 107, 2 (2022) 1451–1468. [CrossRef] [Google Scholar]
  49. T. Bianco, V. Freour, I. Cossette, F. Bevilacqua, R. Caussé: Measures of facial muscle activation, intra-oral pressure and mouthpiece force in trumpet playing. Journal of New Music Research 41, 1 (2012) 49–65. [CrossRef] [Google Scholar]
  50. B. Bergeot, C. Vergez: Analytical prediction of delayed Hopf bifurcations in a simplified stochastic model of reed musical instruments. Nonlinear Dynamics 107, 4 (2022) 3291–3312. [CrossRef] [Google Scholar]
  51. P. Brzeski, M. Lazarek, T. Kapitaniak, J. Kurths, P. Perlikowski: Basin stability approach for quantifying responses of multistable systems with parameters mismatch. Meccanica 51 (2016) 2713–2726. [CrossRef] [Google Scholar]
  52. C. Mitra, J. Kurths, R.V. Donner: An integrative quantifier of multistability in complex systems based on ecological resilience. Scientific Reports 5, 1 (2015) 16196. [CrossRef] [PubMed] [Google Scholar]
  53. M. Pàmies-Vilà, A. Hofmann, V. Chatziioannou: Analysis of tonguing and blowing actions during clarinet performance. Frontiers in Psychology 9 (2018) 617. [CrossRef] [PubMed] [Google Scholar]
  54. A. Lazarus, O. Thomas: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. Comptes Rendus Mécanique 338, 9 (2010) 510–517. [Google Scholar]
  55. L. Guillot, A. Lazarus, O. Thomas, C. Vergez, B. Cochelin: A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems. Journal of Computational Physics 416 (2020) 109477. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.