Open Access
Issue |
Acta Acust.
Volume 8, 2024
|
|
---|---|---|
Article Number | 75 | |
Number of page(s) | 13 | |
Section | Computational and Numerical Acoustics | |
DOI | https://doi.org/10.1051/aacus/2024071 | |
Published online | 13 December 2024 |
- M. Vorländer: Computer simulations in room acoustics: Concepts and uncertainties, Journal of the Acoustical Society of America 133, 3 (2013) 1203–1213. [CrossRef] [PubMed] [Google Scholar]
- L. Savioja, U.P. Svensson: Overview of geometrical room acoustic modeling techniques, Journal of the Acoustical Society of America 138, 2 (2015) 708–730. [Google Scholar]
- D. Takeuchi, K. Yatabe, Y. Oikawa: Source directivity approximation for finite difference time-domain simulation by estimating initial value, Journal of the Acoustical Society of America 145, 4 (2019) 2638–2649. [CrossRef] [PubMed] [Google Scholar]
- D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, Journal of the Acoustical Society of America 98, 6 (1995) 3302–3308. [CrossRef] [Google Scholar]
- K. Kowalczyk, M. van Walstijn: Room acoustics simulation using 3D compact explicit FDTD schemes, IEEE Transactions on Audio, Speech, and Language Processing 19, 1 (2011) 34–46. [CrossRef] [Google Scholar]
- A. Craggs: A finite element method for free vibration of air in ducts and rooms with absorbing walls, Journal of Sound and Vibration 173, 4 (1994) 568–576. [CrossRef] [Google Scholar]
- A.G. Prinn: A review of finite element methods for room acoustics, Acoustics 5, 2 (2023) 367–395. [CrossRef] [Google Scholar]
- A. Hargreaves, T.J. Cox: A transient boundary element method model of Schroeder diffuser scattering using well mouth impedance, Journal of the Acoustical Society of America 124, 5 (2008) 2942–2951. [CrossRef] [PubMed] [Google Scholar]
- N.A. Gumerov, R. Duraiswami: Fast multipole accelerated boundary element methods for room acoustics, Journal of the Acoustical Society of America 150, 3 (2021) 1707–1720. [CrossRef] [PubMed] [Google Scholar]
- S. Bilbao: Modeling of complex geometries and boundary conditions in finite difference / finite volume time domain room acoustics simulation, IEEE Transactions on Audio, Speech, and Language Processing 21, 7 (2013) 1524–1533. [CrossRef] [Google Scholar]
- S. Bilbao, B. Hamilton: Wave-based room acoustics simulation: explicit / implicit finite volume modeling of viscothermal losses and frequencydependent boundaries, Journal of the Audio Engineering Society 65, 1/2 (2017) 78–89. [CrossRef] [Google Scholar]
- H. Wang, I. Sihar, R. Pagan Munoz, M. Hornikx: Room acoustics modelling in the time-domain with the nodal discontinuous Galerkin method, Journal of the Acoustical Society of America 145, 4 (2019) 2605–2663. [Google Scholar]
- F. Pind, A.P. Engsig-Karup, C.H. Jeong, J.S. Hesthaven, J.S. Mejling, J. Strømann-Andersen: Time domain room acoustic simulations using the spectral element method, Journal of the Acoustical Society of America 145, 6 (2019) 3299–3310. [CrossRef] [PubMed] [Google Scholar]
- F. Pind, C.H. Jeong, A.P. Engsig-Karup, J.S. Hesthaven, J. Strømann-Andersen: Timedomain room acoustic simulations with extendedreacting porous absorbers using the discontinuous Galerkin method, Journal of the Acoustical Society of America 148, 5 (2020) 2851–2863. [CrossRef] [PubMed] [Google Scholar]
- B. Hamilton, S. Bilbao: Time-domain modeling of wave-based room acoustics including viscothermal and relaxation effects in air, JASA Express Letters 1, 9 (2021) 092401. [CrossRef] [PubMed] [Google Scholar]
- G. Fratoni, B. Hamilton, D. D’Orazio: Feasibility of a finite-difference time-domain model in large-scale acoustic simulations, Journal of the Acoustical Society of America 152, 1 (2022) 330–341. [CrossRef] [PubMed] [Google Scholar]
- Y. Li, J. Meyer, T. Lokki, J. Cuenca, O. Atak, W. Desmet: Benchmarking of finite difference time-domain method and fast multipole boundary element method for room acoustics, Applied Acoustics 191 (2022) 1–13. [Google Scholar]
- F. Brinkmann, L. Aspöck, D. Ackermann, S. Lepa, M. Vorländer, S. Weinzierl: A round robin on room acoustical simulation and auralization, Journal of the Acoustical Society of America 145, 4 (2019) 2746–2760. [CrossRef] [PubMed] [Google Scholar]
- J. van Mourik, D. Murphy: Explicit higherorder FDTD schemes for 3D room acoustic simulation, IEEE Transactions on Audio, Speech, and Language Processing 22, 12 (2014) 2003–2011. [CrossRef] [Google Scholar]
- B. Hamilton, S. Bilbao: FDTD methods for 3D room acoustics simulation with high order accuracy in space and time, IEEE Transactions on Audio, Speech, and Language Processing 25, 11 (2017) 2112–2124. [CrossRef] [Google Scholar]
- S. Sakamoto: Phase-error analysis of high-order finite difference time domain scheme and its influence on calculation results of impulse response in closed sound field, Acoustical Science and Technology 28, 5 (2007) 295–309. [CrossRef] [Google Scholar]
- A. Emmanuelli, D. Dragna, S. Ollivier, P. Blanc-Benon: Characterization of topographic effects on sonic boom reflection by resolution of the Euler equations, Journal of the Acoustical Society of America 149, 4 (2021) 2437–2450. [CrossRef] [PubMed] [Google Scholar]
- L. Stein, F. Straube, J. Sesterhenn, S. Weinzierl, M. Lemke: Adjoint-based optimization of sound reinforcement including non-uniform flow, Journal of the Acoustical Society of America 146, 3 (2019) 1774–1785. [CrossRef] [PubMed] [Google Scholar]
- N.H. Fletcher: The nonlinear physics of musical instruments, Reports on Progress in Physics 62, 5 (1999) 723–764. [CrossRef] [Google Scholar]
- S. Bilbao, J. Chick: Finite difference time domain simulation for the brass instrument bore, Journal of the Acoustical Society of America 134, 5 (2013) 3860–3871. [CrossRef] [PubMed] [Google Scholar]
- H. Berjamin, B. Lombard, C. Vergez, E. Cottanceau: Time-domain numerical modeling of brass instruments including nonlinear wave propagation, viscothermal losses, and lips vibration, Acta Acustica united with Acustica 103, 1 (2017) 117–131. [CrossRef] [Google Scholar]
- A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods, Journal of the Acoustical Society of America 95, 2 (1994) 1112–1118. [CrossRef] [Google Scholar]
- J. Bensa, S. Bilbao, R. Kronland-Martinet, J.O. Smith III: The simulation of piano string vibration: From physical models to finite difference schemes and digital waveguides, Journal of the Acoustical Society of America 114, 2 (2003) 1095–1107. [CrossRef] [PubMed] [Google Scholar]
- S.K. Lele: Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics 103, 1 (1992) 16–42. [CrossRef] [Google Scholar]
- C.K.W. Tam, J.C. Webb: Dispersion relation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics 107 (1993) 262–281. [CrossRef] [Google Scholar]
- E. Hairer, S.P. Nørsett, G. Wanner: Solving ordinary differential equations I: nonstiff problems. Springer series in computational mathematics, 2nd edn., Springer, Berlin, Heidelberg, 2000. [Google Scholar]
- M. Calvo, J.M. Franco, L. Randez: A new minimum storage Runge-Kutta scheme for computational acoustics, Journal of Sound and Vibration 201, 1 (2004) 1–12. [Google Scholar]
- F.Q. Hu, M.Y. Hussaini, J.L. Manthey: Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, Journal of Computational Physics 124, 1 (1996) 177–191. [CrossRef] [Google Scholar]
- C.K.W. Tam, J.C. Webb, Z. Dong: A study of the short wave components in computational acoustics, Journal of Computational Acoustics 1 (1993) 1–30. [CrossRef] [Google Scholar]
- D.V. Gaitonde, M.R. Visbal: Pade-type higher-order boundary filters for the Navier-Stokes equations, AIAA Journal 38, 11 (2000) 2103–2112. [CrossRef] [Google Scholar]
- T.J. Poinsot, S.K. Lele: Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics 101, 1 (1992) 104–129. [CrossRef] [Google Scholar]
- F.Q. Hu: Development of PML absorbing boundary conditions for computational aeroacoustics: A progress review, Computers & Fluids 37 (2008) 336–348. [CrossRef] [Google Scholar]
- A. Mani: Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment, Journal of Computational Physics 231 (2012) 704–716. [CrossRef] [Google Scholar]
- K. Attenborough: Acoustical characteristics of porous materials, Physics Reports 82, 3 (1982) 179–227. [CrossRef] [Google Scholar]
- M. Aretz, M. Vorländer: Efficient modelling of absorbing boundaries in room acoustic fe simulations, Acta Acustica united with Acustica 96, 6 (2010) 1042–1050. [CrossRef] [Google Scholar]
- C.S. Peskin: Flow patterns around heart valves: a numerical method, Journal of Computational Physics 10, 2 (1972) 252–271. [CrossRef] [Google Scholar]
- Y. Cai, S. van Ophem, W. Desmet, E. Deckers: Model order reduction of time-domain vibro-acoustic finite element simulations with nonlocally reacting absorbers, Computer Methods in Applied Mechanics and Engineering 416 (2023) 116345. [CrossRef] [Google Scholar]
- I. Moufid, D. Matignon, R. Roncen, E. Piot: Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media, Journal of Computational Physics 451 (2022) 110888. [CrossRef] [Google Scholar]
- A. Alomar, D. Dragna, M.A. Galland: Time-domain simulations of sound propagation in a flow duct with extended-reacting liners, Journal of Sound and Vibration 507 (2021) 116137. [CrossRef] [Google Scholar]
- J. Reiss: Pressure-tight and non-stiff volume penalization for compressible flows, Journal of Scientific Computing 90, 86 (2022) 1–29. [CrossRef] [Google Scholar]
- M. Lemke, J. Reiss: Approximate acoustic boundary conditions in the time-domain using volume penalization, Journal of the Acoustical Society of America 153, 2 (2023) 1219–1228. [CrossRef] [PubMed] [Google Scholar]
- S. Bilbao: Immersed boundary methods in wave-based virtual acoustics, Journal of the Acoustical Society of America 151, 3 (2022) 1627–1638. [CrossRef] [PubMed] [Google Scholar]
- S. Bilbao: Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The one-dimensional case, Journal of the Acoustical Society of America 153, 4 (2023) 2023–2036. [CrossRef] [PubMed] [Google Scholar]
- W.X. Huang, F.B. Tian: Recent trends and progress in the immersed boundary method, Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science 233, 23–24 (2019) 7617–7636. [CrossRef] [Google Scholar]
- L.D. Landau, E.M. Lifshitz: Fluid mechanics. Course of theoretical physics, vol. 6, 2nd edn., Butterworth-Heinemann, London, , 1987. [Google Scholar]
- E.F. Toro: Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3rd edn., Springer Science & Business Media, Berlin, Heidelberg, 2009. [CrossRef] [Google Scholar]
- K. Van den Abeele, J. Ramboer, G. Ghorbaniasl, C. Lacor: Numerical solution of the linearized euler equations using compact schemes, in: H. Deconinck, E. Dick (eds), Computational fluid dynamics 2006, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 837–842. [CrossRef] [Google Scholar]
- C. Hirsch: Numerical computation of internal and external flows, volume 1: fundamentals of numerical discretization, John Wiley and Sons, New York, 1988 [Google Scholar]
- L.N. Trefethen: Group velocity in finite difference schemes, SIAM Review 24, 2 (1982) 113–136. [CrossRef] [Google Scholar]
- J.R. Bunch, J.E. Hopcroft: Triangular factorization and inversion by fast matrix multiplication, Mathematics of Computation 28, 125 (1974) 231–236. [CrossRef] [Google Scholar]
- S.D. Conte, C. de Boor: Elementary numerical analysis, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. [CrossRef] [Google Scholar]
- M.B. Giles, N.A. Pierce: An introduction to the adjoint approach to design, Flow, Turbulence and Combustion 65, 3 (2000) 393–415. [CrossRef] [Google Scholar]
- K.L. Shlager, J.G. Maloney, S.L. Ray, A.F. Peterson: Relative accuracy of several finite difference time-domain methods in two and three dimensions, IEEE Transactions on Antennas and Propagation 41, 12 (1993) 1732–1737. [CrossRef] [Google Scholar]
- B. Finkelstein, R. Kastner: Finite difference time domain dispersion reduction schemes, Journal of Computational Physics 221, 1 (2007) 422–438. [CrossRef] [Google Scholar]
- A. Iserles: A first course in the numerical analysis of differential equations (2nd edn.). Cambridge Texts in Applied Mathematics, Cambridge University Press, 2008. [Google Scholar]
- J.C. Butcher: Numerical methods for ordinary differential equations in the 20th century, Journal of Computational and Applied Mathematics 125, 1 (2000) 1–29. [CrossRef] [Google Scholar]
- A. Hindmarsh, P. Gresho, D. Griffiths: The stability of explicit Euler time-integration for certain finite difference approximations of the multidimensional advection-diffusion equation, International Journal for Numerical Methods in Fluids 9, 4 (1984) 853–897. [CrossRef] [Google Scholar]
- F. Nazari, A. Mohammadian, M. Charron: High-order low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes, Journal of Computational Physics 286 (2015) 38–48. [CrossRef] [Google Scholar]
- J. Berland, C. Bogey, C. Bailly: Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm, Computers & Fluids 35 (2006) 1459–1463. [CrossRef] [Google Scholar]
- K.W. Thompson: Time dependent boundary conditions for hyperbolic systems, Journal of Computational Physics 68, 1 (1987) 1–24. [CrossRef] [Google Scholar]
- F. Pled, C. Desceliers: Review and recent developments on the perfectly matched layer (PML) method for the numerical modeling and simulation of elastic wave propagation in unbounded domains, Archives of Computational Methods in Engineering 29, 1 (2022) 471–518. [CrossRef] [Google Scholar]
- R. Troian, D. Dragna, C. Bailly, M.A. Galland: Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow, Journal of Sound and Vibration 392 (2016) 200–216. [Google Scholar]
- X. Li, X. Li, C. Tam: Construction and validation of a broadband time domain impedance boundary condition, in: 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, Oregon, 5–8 June, 2011. [Google Scholar]
- H. Deconinek, C. Hirsch, J. Peuteman: Characteristic decomposition methods for the multidimensional euler equations, in: F.G. Zhuang, Y.L. Zhu (eds), Tenth International Conference on Numerical Methods in Fluid Dynamics, Springer, Berlin, Heidelberg, 1986, pp. 216–221. [CrossRef] [Google Scholar]
- E. Albin, Y. D’Angelo, L. Vervisch: Flow streamline based Navier–Stokes characteristic boundary conditions: Modeling for transverse and corner outflows, Computers & Fluids 51, 1 (2011) 115–126. [CrossRef] [Google Scholar]
- R.D. Sandberg, N.D. Sandham: Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound, AIAA Journal 44, 2 (2006) 402–405. [CrossRef] [Google Scholar]
- C. Bogey, C. Bailly, D. Juvé: Numerical simulation of sound generated by vortex pairing in a mixing layer, AIAA Journal 38, 12 (2000) 2210–2218. [CrossRef] [Google Scholar]
- P. de Palma, M. de Tullio, G. Pascazio, M. Napolitano: An immersed-boundary method for compressible viscous flows, Computers & Fluids 35, 7 (2006) 693–702. [CrossRef] [Google Scholar]
- Q. Liu, O.V. Vasilyev: A brinkman penalization method for compressible flows in complex geometries, Journal of Computational Physics 227, 2 (2007) 946–966. [CrossRef] [Google Scholar]
- N.K.R. Kevlahan, T. Dubos, M. Aechtner: Adaptive wavelet simulation of global ocean dynamics using a new brinkman volume penalization, Geoscientific Model Development 8, 12 (2015) 3891–3909. [CrossRef] [Google Scholar]
- F. Kemm, E. Gaburro, F. Thein, M. Dumbser: A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer–Nunziato model, Computers & Fluids 204 (2020) 104536. [CrossRef] [Google Scholar]
- J.T. Katsikadelis: Boundary elements. Theory and applications, Elsevier, Oxford, 2002. [Google Scholar]
- M. Lemke, L. Stein, A. Hölter, Y. Schubert: cruna-toolkit, 2024. Available at https://github.com/cruna-toolkit. [Google Scholar]
- D.A. Webster, D.T. Blackstock: Finiteamplitude saturation of plane sound waves in air, Journal of the Acoustical Society of America 62, 3 (1977) 518–523. [CrossRef] [Google Scholar]
- F. Brinkmann, L. Aspöck, D. Ackermann, R. Opdam, M. Vorländer, S. Weinzierl: A benchmark for room acoustical simulation. Concept and database, Applied Acoustics 176 (2021) 107867. [Google Scholar]
- F. Straube, F. Schultz, D. Albanes Bonillo, S. Weinzierl: An analytical approach for optimizing the curving of line source arrays, Journal of the Audio Engineering Society 66, 1/2 (2018) 4–20. [CrossRef] [Google Scholar]
- d&b audio: 2024. https://www.dbaudio.com/global/en/products/all/series/sl-series/gsl8/#tab-technicaldata, accessed: 2024–09-20 [Google Scholar]
- S. Weinzierl, S. Lepa, F. Schultz, E. Detzner, H. von Coler, G. Behler: Sound power and timbre as cues for the dynamic strength of orchestral instruments, Journal of the Acoustical Society of America 144, 3 (2018) 1347–1355. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.