Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Vibroacoustics
Article Number 71
Number of page(s) 13
DOI https://doi.org/10.1051/aacus/2024056
Published online 10 December 2024
  1. J.A. Kanis, L.J. Melton, C. Christiansen, C.C. Johnston, N. Khaltaev: The diagnosis of osteoporosis, Journal of Bone and Mineral Research 9, 8 (1994) 1137–1141. [CrossRef] [PubMed] [Google Scholar]
  2. R. Dell, D. Greene: Is osteoporosis disease management cost effective? Current Osteoporosis Reports 8, 1 (2010) 49–55. [CrossRef] [PubMed] [Google Scholar]
  3. NICE: Osteoporosis: assessing the risk of fragility fracture, National Institute for Health and Care Excellence, 2017. [Google Scholar]
  4. O. Ström, F. Borgström, J.A. Kanis, J. Compston, C. Cooper, E.V. McCloskey, B. Jönsson: Osteoporosis: burden, health care provision and opportunities in the EU, Archives of Osteoporosis 6, 1 (2011) 59–155. [CrossRef] [PubMed] [Google Scholar]
  5. J.A. Kanis, WHO Study Group: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report, Osteoporosis International 4, 6 (1994) 368–381. [CrossRef] [PubMed] [Google Scholar]
  6. NIH Consensus Development Panel: Osteoporosis prevention, diagnosis, and therapy, JAMA 2856 (2001) 785–795. [CrossRef] [PubMed] [Google Scholar]
  7. H.P. Dimai: Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases, Bone 104 (2017) 39–43. [CrossRef] [PubMed] [Google Scholar]
  8. J.D. Currey: The structure and mechanics of bone, Journal of Materials Science 47, 1 (2012) 41–54. [CrossRef] [Google Scholar]
  9. J.D. Currey: How well are bones designed to resist fracture? Journal of Bone and Mineral Research 18, 4 (2003) 591–598. [CrossRef] [PubMed] [Google Scholar]
  10. M.L. Bouxsein: Mechanisms of osteoporosis therapy: a bone strength perspective, Clinical Cornerstone 5 (2003) S13–S21. [CrossRef] [Google Scholar]
  11. M.L. Bouxsein, E. Seeman: Quantifying the material and structural determinants of bone strength, Best Practice and Research Clinical Rheumatology 23, 6 (2009) 741–753. [CrossRef] [Google Scholar]
  12. D.W. Dempster, R. Marcus, M.L. Bouxsein: Chapter 1 – The nature of osteoporosis, in: D.W. Dempster, J.A. Cauley, M.L. Bouxsein, F. Cosman Eds. Marcus and Feldman’s osteoporosis, 5th edn, Academic Press, 2021, pp. 3–13. [Google Scholar]
  13. R. Hodgskinson, J.D. Currey: Separate effects of osteoporosis and density on the strength and stiffness of human cancellous bone, Clinical Biomechanics 8, 5 (1993) 262–268. [CrossRef] [Google Scholar]
  14. K.F. Tapping, C.M. Langton, C.F. Njeh, The measurement of broadband ultrasonic attenuation in cancellous bone – a review of the science and technology, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 55, 7 (2008) 1546–1554. [CrossRef] [PubMed] [Google Scholar]
  15. H. Aygün, K. Attenborough, W. Lauriks, C.M. Langton : Ultrasonic wave propagation in stereo-lithographical bone replicas, Journal of the Acoustical Society of America 127, 6 (2010) 3781–3789. [CrossRef] [PubMed] [Google Scholar]
  16. P. Pisani, M.D. Renna, F. Conversano, E. Casciaro, M. Muratore, E. Quarta, M.D. Paola, S. Casciaro: Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques, World Journal of Radiology 5, 11 (2013) 398–410. [CrossRef] [PubMed] [Google Scholar]
  17. L. Bowman, A.B. Loucks: Improvements to mechanical response tissue analysis, MethodsX 6 (2019) 2408–2419. [CrossRef] [PubMed] [Google Scholar]
  18. S.J. Warden, A. Dick, J.E. Simon, T.M. Manini, D.W. Russ, C. Lyssikatos, L.A. Clark, B.C. Clark: Fracture discrimination capability of ulnar flexural rigidity measured via Cortical Bone Mechanics Technology: study protocol for the STRONGER Study, JBMR Plus 8, 1 (2024) ziad002. [CrossRef] [PubMed] [Google Scholar]
  19. P.A. Arnold, E.R. Ellerbrock, L. Bowman, A.B. Loucks: Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas, Journal of Biomechanics 47, 14 (2014) 3580–3583. [CrossRef] [PubMed] [Google Scholar]
  20. L.E. Miller, W.K. Ramp, C.R. Steele, S.M. Nickols-Richardson, W.G. Herbert: Rationale, design and clinical performance of the mechanical response tissue analyser: a non-invasive technology for measurement of long bone bending stiffness, Journal of Medical Engineering & Technology 37, 2, (2013) 144–149. [CrossRef] [PubMed] [Google Scholar]
  21. H. Aygün: A viscoelastic system for determining acoustical and mechanical parameters of the bone, Applied Acoustics 150 (2019) 70–75. [CrossRef] [Google Scholar]
  22. B. Bediz, N.H. Özgüven, F. Korkusuz: Vibration measurements predict the mechanical properties of human tibia, Clinical Biomechanics 25, 4 (2010) 365–371. [CrossRef] [Google Scholar]
  23. M. Cornelissen, P. Cornelissen, G. van der Perre, A.B. Christensen, F. Ammitzboll, C. Dyrbye: Assessment of tibial stiffness by vibration testing in situ – III. Sensitivity of different modes and interpretation of vibration measurements, Journal of Biomechanics 20, 4 (1987) 333–342. [CrossRef] [PubMed] [Google Scholar]
  24. W.P. Doherty, E.G. Bovill, E.L. Wilson: Evaluation of the use of resonant frequencies to characterize physical properties of human long bones, Journal of Biomechanics 7, 6 (1974) 559–561. [CrossRef] [PubMed] [Google Scholar]
  25. J.M. Jurist: In vivo determination of the elastic response of bone. II. Ulnar resonant frequency in osteoporotic, diabetic and normal subjects, Physics in Medicine and Biology 15, 3 (1970) 427–434. [CrossRef] [PubMed] [Google Scholar]
  26. P. Cornelissen, M. Cornelissen, G. Van der Perre, A.B. Christensen, F. Ammitzbøll, C. Dyrbye: Assessment of tibial stiffness by vibration testing in situ – II. Influence of soft tissues, joints and fibula, Journal of Biomechanics 19, 7 (1986) 551–561. [CrossRef] [PubMed] [Google Scholar]
  27. J.J. Thomsen: Modelling human tibia structural vibrations, Journal of Biomechanics 23, 3 (1990) 215–228. [CrossRef] [PubMed] [Google Scholar]
  28. G. Lowet, R. Van Audekercke, G. Van der Perre, P. Geusens, J. Dequeker, J. Lammens: The relation between resonant frequencies and torsional stiffness of long bones in vitro. Validation of a simple beam model, Journal of Biomechanics 26, 6 (1993) 689–696. [CrossRef] [PubMed] [Google Scholar]
  29. D. Orne: The in vivo, driving-point impedance of the human ulna – A viscoelastic beam model, Journal of Biomechanics 7, 3 (1974) 249–257. [CrossRef] [PubMed] [Google Scholar]
  30. G. van der Perre, G. Lowet: In vivo assessment of bone mechanical properties by vibration and ultrasonic wave propagation analysis, Bone 18, 1, Supplement 1 (1996) S29–S35. [CrossRef] [Google Scholar]
  31. R.J. Collier, O. Nadav, T.G. Thomas: The mechanical resonances of a human tibia: part I – In vitro, Journal of Biomechanics 15, 8 (1982) 545–553. [CrossRef] [PubMed] [Google Scholar]
  32. T.K. Hight, R.L. Piziali, D.A. Nagel: Natural frequency analysis of a human tibia, Journal of Biomechanics 13, 2 (1980) 139–147. [CrossRef] [PubMed] [Google Scholar]
  33. G. Campoli, N. Baka, B.L. Kaptein, E.R. Valstar, S. Zachow, H. Weinans, A.A. Zadpoor: Relationship between the shape and density distribution of the femur and its natural frequencies of vibration, Journal of Biomechanics 47, 13 (2014) 3334–3343. [CrossRef] [PubMed] [Google Scholar]
  34. T.B. Khalil, D.C. Viano, L.A. Taber: Vibrational characteristics of the embalmed human femur, Journal of Sound and Vibration 75, 3 (1981) 417–436. [CrossRef] [Google Scholar]
  35. M.C. Hobatho, R. Darmana, P. Pastor, J.J. Barrau, S. Laroze, J.P. Morucci: Development of a three-dimensional finite element model of a human tibia using experimental modal analysis, Journal of Biomechanics 24, 6 (1991) 371–383. [CrossRef] [PubMed] [Google Scholar]
  36. B. Couteau, M.C. Hobatho, R. Darmana, J.-C. Brignola, J.-Y. Arlaud: Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties, Journal of Biomechanics 31, 4 (1998) 383–386. [CrossRef] [PubMed] [Google Scholar]
  37. M.C. Hobatho, R. Darmana, J.J. Barrau, S. Laroze, J.P. Morucci: Natural frequency analysis of a human tibia, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2 (1988) 690–691. [CrossRef] [Google Scholar]
  38. G. Leon, H.-L. Chen: Direct determination of dynamic elastic modulus and poisson’s ratio of timoshenko rods, Vibration 2, 1 (2019) 157–173. [CrossRef] [Google Scholar]
  39. A.W. Leissa, M.S. Qatu: Vibrations of continuous systems, McGraw-Hill Education, New York, 2013. [Google Scholar]
  40. J. Scanlan, O. Umnova, F. Li: FE Modelling tibia bone vibration – the influence of shape, twist, and size, in: A. Astolfi, F. Asdrubali, L. Shtrepi, Ed. Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023, Torino, Italy, 11–15 September, 2023, pp. 1305–1311. [Google Scholar]
  41. E. Bauer: Human femur. Available at https://sketchfab.com/3d-models/human-femur-a9c1f1a88b104c3fbfe975fa10b31b31, 2017 (accessed 22-03-2023). [Google Scholar]
  42. E. Bauer: Human tibia. Available at https://sketchfab.com/3d-models/human-tibia-7c1979d6127749bc80a9d9276d24edcd, 2017 (accessed 16-02-2022). [Google Scholar]
  43. A.B. Christensen, F. Ammitzbøll, C. Dyrbye, M. Cornelissen, P. Cornelissen, G. Van der Perre: Assessment of tibial stiffness by vibration testing in situ – I. Identification of mode shapes in different supporting conditions, Journal of Biomechanics 19, 1 (1986) 53–60. [CrossRef] [PubMed] [Google Scholar]
  44. A. Tsuchikane, Y. Nakatsuchi, A. Nomura: The influence of joints and soft tissue on the natural frequency of the human tibia using the impulse response method, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 209, 3 (1995) 149–155. [CrossRef] [PubMed] [Google Scholar]
  45. J.M. Jurist: Difficulties with measurement of ulnar resonant frequency, Physics in Medicine and Biology 18, 2 (1973) 289–291. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.