Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
Article Number 50
Number of page(s) 13
DOI https://doi.org/10.1051/aacus/2024060
Published online 11 October 2024
  1. N.H. Fletcher, T.D. Rossing: The physics of musical instruments. 2nd edn. Springer-Verlag, New York. 1998. [Google Scholar]
  2. A. Hirschberg: Aero-acoustics of wind instruments, in: A. Hirschberg, J. Kergomard, G. Weinreich (Eds.), Mechanics of musical instruments, Springer-Verlag, Vienna and New York. 1995, pp. 291–369. [Google Scholar]
  3. B. Fabre, J. Gilbert, A. Hirschberg, X. Pelorson: Aeroacoustics of musical instruments. Annual Review of Fluid Mechanics 44 (2011) 1–25. [Google Scholar]
  4. J.W. Coltman: Jet driven mechanisms in edge tones and organ pipes. Journal of the Acoustical Society of America 60 (1976) 725–733. [CrossRef] [Google Scholar]
  5. M.P. Verge, B. Fabre, W.E.A. Mahu, A. Hirschberg, R.R. van Hassel, A.P.J. Wijnands, J.J. de Vries, C.J. Hogendoorn: Jet formation and jet velocity fluctuations in a flue organ pipe. Journal of the Acoustical Society of America 95 (1994) 1119–1132. [CrossRef] [Google Scholar]
  6. B. Fabre, A. Hirschberg, A.P.J. Wijnands: Vortex shedding in steady oscillation of a flue organ pipe. Acta Acustica united with Acustica 82 (1996) 863–877. [Google Scholar]
  7. S. Yoshikawa: Jet-wave amplification in organ pipes. Journal of the Acoustical Society of America 103 (1998) 2706–2717. [CrossRef] [Google Scholar]
  8. S. Yoshikawa: A pictorial analysis of jet and vortex behaviours during attack transients in organ pipe models. Acta Acustica united with Acustica 86 (2000) 623–633. [Google Scholar]
  9. C. Ségoufin, B. Fabre, M.P. Verge, A. Herschberg, A.P.J. Wijinands: Experimental study of the influence of the mouth geometry on sound production in a recorder-like instrument: windway length and chamfers. Acta Acustica united with Acustica 86 (2000) 649–661. [Google Scholar]
  10. M. Miyamoto, Y. Ito, T. Iwasaki, T. Akamura, K. Takahashi, T. Takami, T. Kobayashi, A. Nishida, M. Aoyagi: Numerical study on acoustic oscillations of 2D and 3D flue organ pipe like instruments with compressible LES. Acta Acustica united with Acustica 99 (2013) 154–171. [CrossRef] [Google Scholar]
  11. R. Tabata, R. Matsuda, T. Koiwaya, S. Iwagami, H. Midorikawa, T. Kobayashi, K. Takahashi: Three-dimensional numerical analysis of acoustic energy absorption and generation in an air-jet instrument based on Howes energy corollary. Journal of the Acoustical Society of America 149 (2021) 4000–4012. [CrossRef] [PubMed] [Google Scholar]
  12. J.-M. Chen, D. Laurin, J. Smith, J. Wolfe: Vocal track interactions in recorder performance, in: Proceedings of the 19th International Congress on Acoustics, Madrid, Spain. 2007, pp. 5565–5572. [Google Scholar]
  13. R. Auvray, A. Ernoult, S. Terrien, P.Y. Lagrée, B. Fabre, C. Vergez: Effect of changing the vocal tract shape on the sound production of the recorder: an experimental and theoretical study. Acta Acustica united with Acustica 101 (2015) 317–330. [CrossRef] [Google Scholar]
  14. S. Tateishi, S. Iwagami, G. Tsutsumi, T. Kobayashi, T. Takami, K. Takahashi: Role of the foot chamber in the sounding mechanism of a flue organ pipe. Acoustical Science and Technology 40, 1 (2019) 29–39. [CrossRef] [Google Scholar]
  15. K. Takahashi, S. Iwagami, S. Tateishi, G. Tsutsumi, T. Kobayashi, T. Takami: Anti-phase synchronization between the oscillation in the pipe and that in the foot of a flue organ pipe, in: Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany. 2019, pp. 5565–5572. [Google Scholar]
  16. S. Ikoga, T. Onomata, R. Tabata, S. Iwagami, T. Kobayashi, K. Takahashi: Numerical study on a three-dimensional model of a flue organ pipe: relative phase between pipe and foot, and stability, in: Proceedings of the Forum Acousticum 2023, Torino, Italy. 2023, pp. 4439–4442. [Google Scholar]
  17. N.H. Fletcher, S. Thwaites: Wave propagation on an acoustically perturbed jet. Acustica 42 (1979) 323–334. [Google Scholar]
  18. S.A. Elder: Self-excited depth-mode resonance for a wall-mounted cavity in turbulent flow. Journal of the Acoustical Society of America 64 (1978) 877–890. [CrossRef] [Google Scholar]
  19. S.A. Elder: Forced oscillations of a separated shear layer with application to cavity flow-tone effects. Journal of the Acoustical Society of America 67 (1980) 774–781. [CrossRef] [Google Scholar]
  20. A.W. Nolle: Sinuous instability of a planar air jet: Propagation parameters and acoustic excitation. Journal of the Acoustical Society of America 103 (1998) 3690–3705. [CrossRef] [PubMed] [Google Scholar]
  21. B. Fabre, A. Hirschberg: Physical Modeling of Flue Instruments: A Review of Lumped Models. Acta Acustica united with Acustica 86 (2000) 599–610. [Google Scholar]
  22. K. Takahashi, S. Iwagami, T. Kobayashi, T. Takami: Theoretical estimation of the acoustic energy generation and absorption caused by jet oscillation. Journal of the Physical Society of Japan 85 (2014) 044402. [Google Scholar]
  23. M.S. Howe: On the absorption of sound by turbulence and other hydrodynamic flows. IMA Journal of Applied Mathematics 32 (1984) 187–209. [CrossRef] [Google Scholar]
  24. A. Bamberger: Vortex sound in flutes using flow determination with endo-piv, in: Forum Acusticum Budapest 2005, 4th European Congress on Acoustics (2005) 665–670. [Google Scholar]
  25. S. Yoshikawa, H. Tashiro, Y. Sakamoto: Experimental examination of vortex-sound generation in an organ pipe: A proposal of jet vortex-layer formation model. Journal of Sound and Vibration 331 (2012) 2558–2577. [CrossRef] [Google Scholar]
  26. T. Kobayashi, T. Akamura, Y. Nagao, T. Iwasaki, K. Nakano, K. Takahashi, M. Aoyagi: Interaction between compressible fluid and sound in a flue instrument. Fluid Dynamics Research 46 (2014) 061411. [CrossRef] [Google Scholar]
  27. G. Paál, J. Angster, W. Garen, A. Miklós: A combined LDA and flow-visualization study on flue organ pipes. Experiments in Fluids 40 (2006) 825–835. [CrossRef] [Google Scholar]
  28. B. Fabre: Flute-like instruments, in: A. Chaigne, J. Kergomard (Eds.), Acoustics of Musical Instruments, Springer-Verlag, New York. 2016, pp. 559–606. [CrossRef] [Google Scholar]
  29. N.H. Fletcher: Stopped-pipe wind instruments: Acoustics of the panpipes. Journal of the Acoustical Society of America 117 (2005) 370–374. [CrossRef] [PubMed] [Google Scholar]
  30. R. Auvray, B. Fabre, F. Meneses, P. de la Cuadra, P.-Y. Lagrée: Specific features of a stopped pipe blown by a turbulent jet: Aeroacoustics of the panpipes. Journal of the Acoustical Society of America 139 (2016) 3214–3225. [CrossRef] [PubMed] [Google Scholar]
  31. T.J. Poinsot, S.K. Lele: Boundary conditions for direct simulations of compressible viscous flows. Journal of Computational Physics 1011 (1992) 104–129. [CrossRef] [Google Scholar]
  32. R.M. May: Simple mathematical models with very complicated dynamics. Nature 261 (1976) 459–467. [CrossRef] [PubMed] [Google Scholar]
  33. M.J. Feigenbaum: Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics 19 (1978) 25–52. [CrossRef] [Google Scholar]
  34. P. Bergé, Y. Pomeaú, Ch Vidal: L’Ordre dans le Chaos. Hermann, Paris. 1984. [Google Scholar]
  35. N. Giordano, K.L. Saenger: Study of “half-integer” harmonics in recorder tones and some speculations about their origin. Journal of the Acoustical Society of America 154 (2023) 2917–2927. [CrossRef] [PubMed] [Google Scholar]
  36. M.-P. Verge: Aeroacoustics of confined jets, with applications to the physical modeling of recorder-like instruments. Ph.D. thesis. Technische Universiteit Eindhoven, Eindhoven, Netherlands. 1995. [Google Scholar]
  37. D. Ferrand, C. Vergez, B. Fabre, F. Blanc: High-precision regulation of a pressure controlled artificial mouth: The case of recorder-like instruments. Acta Acustica united with Acustica 96 (2010) 701–712. [CrossRef] [Google Scholar]
  38. S. Terrien, C. Vergez, B. Fabre: Flute-like musical instruments: A toy model investigated through numerical continuation. Journal of Sound and Vibration 332 (2013) 3833–3848. [CrossRef] [Google Scholar]
  39. P.T. Nagy, P. Rucz, A. Szabó: Examination of jet growth and jet-drive in the recorder by means of linearized numerical and lumped models. Journal of Sound and Vibration 527 (2022) 116857. [CrossRef] [Google Scholar]
  40. plenumPressure in OpenFOAM v2306: https://doc.openfoam.com/2306/tools/processing/boundary-conditions/rtm/derived/inlet/plenumPressure/ (2023). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.