Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Active Noise and Vibration Control
Article Number 49
Number of page(s) 18
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2024047
Published online 08 October 2024
  1. J.C. Schönfeld: Analogy of hydraulic, mechanical, acoustic and electric systems, Applied Scientific Research, Section B 3 (1954) 417–450. https://doi.org/10.1007/BF02919918. [Google Scholar]
  2. M.C. Smith: Synthesis of mechanical networks: the inerter, IEEE Transactions on Automatic Control 47 (2002) 1648–1662. https://doi.org/10.1109/TAC.2002.803532. [CrossRef] [Google Scholar]
  3. A. Kras, P. Gardonio: Velocity feedback control with a flywheel proof mass actuator, Journal of Sound and Vibration 402 (2017) 31–50. https://doi.org/10.1016/j.jsv.2017.05.001. [CrossRef] [Google Scholar]
  4. J.M. Renno, B.R. Mace: Vibration modelling of helical springs with non-uniform ends, Journal of Sound and Vibration 331 (2012) 2809–2823. https://doi.org/10.1016/J.JSV.2012.01.036. [CrossRef] [Google Scholar]
  5. M.C. Smith, F.-C. Wang: Performance benefits in passive vehicle suspensions employing inerters, Vehicle System Dynamics 42 (2004) 235–257. https://doi.org/10.1080/00423110412331289871. [CrossRef] [Google Scholar]
  6. R. Faraj, Ł. Jankowski, C. Graczykowski, J. Holnicki-Szulc: Can the inerter be a successful shock-absorber? The case of a ball-screw inerter with a variable thread lead, Journal of the Franklin Institute 356 (2019) 7855–7872. https://doi.org/10.1016/j.jfranklin.2019.04.012. [CrossRef] [Google Scholar]
  7. D. De Domenico, P. Deastra, G. Ricciardi, N.D. Sims, D.J. Wagg: Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings, Journal of the Franklin Institute 356 (2019) 7626–7649. https://doi.org/10.1016/j.jfranklin.2018.11.012. [CrossRef] [Google Scholar]
  8. F.-C. Wang, M.-F. Hong, T.-C. Lin: Designing and testing a hydraulic inerter, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225 (2011) 66–72. https://doi.org/10.1243/09544062JMES2199. [CrossRef] [Google Scholar]
  9. M.J. Brennan, J. Garcia-Bonito, S.J. Elliott, A. David, R.J. Pinnington: Experimental investigation of different actuator technologies for active vibration control, Smart Materials and Structures 8 (1999) 145–153. https://doi.org/10.1088/0964-1726/8/1/016. [CrossRef] [Google Scholar]
  10. A. Gonzalez-Buelga, L.R. Clare, S.A. Neild, J.Z. Jiang, D.J. Inman: An electromagnetic inerter-based vibration suppression device, Smart Materials and Structures 24 (2015) 055015. https://doi.org/10.1088/0964-1726/24/5/055015. [CrossRef] [Google Scholar]
  11. D. Li, Y.Z. Liu: Designing and simulating a mechatronic inerter, Applied Mechanics and Materials 620 (2014) 28–32. https://doi.org/10.4028/www.scientific.net/AMM.620.28. [CrossRef] [Google Scholar]
  12. J. Høgsberg, M.L. Brodersen, S. Krenk: Resonant passive–active vibration absorber with integrated force feedback control, Smart Materials and Structures 25 (2016) 047001. https://doi.org/10.1088/0964-1726/25/4/047001. [CrossRef] [Google Scholar]
  13. G. Zhao, G. Raze, A. Paknejad, A. Deraemaeker, G. Kerschen, C. Collette: Active tuned inerter-damper for smart structures and its ℋ optimisation, Mechanical Systems and Signal Processing 129 (2019) 470–478. https://doi.org/10.1016/j.ymssp.2019.04.044. [CrossRef] [Google Scholar]
  14. A. Kras, P. Gardonio: Active vibration control unit with a flywheel inertial actuator, Journal of Sound and Vibration 464 (2020) 114987. https://doi.org/10.1016/j.jsv.2019.114987. [CrossRef] [Google Scholar]
  15. M. Zilletti: Feedback control unit with an inerter proof-mass electrodynamic actuator, Journal of Sound and Vibration 369 (2016) 16–28. https://doi.org/10.1016/j.jsv.2016.01.035. [CrossRef] [Google Scholar]
  16. N. Alujević, G. Zhao, B. Depraetere, P. Sas, B. Pluymers, W. Desmet: ℋ2 optimal vibration control using inertial actuators and a comparison with tuned mass dampers, Journal of Sound and Vibration 333 (2014) 4073–4083. https://doi.org/10.1016/j.jsv.2014.04.038. [CrossRef] [Google Scholar]
  17. S. Zhou, C. Jean-Mistral, S. Chesne: Optimal design of an inerter-based dynamic vibration absorber connected to ground, Journal of Vibration and Acoustics 141 (2019) 051017. https://doi.org/10.1115/1.4043945. [CrossRef] [Google Scholar]
  18. P. Brzeski, E. Pavlovskaia, T. Kapitaniak, P. Perlikowski: The application of inerter in tuned mass absorber, International Journal of Non-Linear Mechanics 70 (2015) 20–29. https://doi.org/10.1016/j.ijnonlinmec.2014.10.013. [CrossRef] [Google Scholar]
  19. P. Brzeski, T. Kapitaniak, P. Perlikowski: Novel type of tuned mass damper with inerter which enables changes of inertance, Journal of Sound and Vibration 349 (2015) 56–66. https://doi.org/10.1016/j.jsv.2015.03.035. [CrossRef] [Google Scholar]
  20. I.F. Lazar, S.A. Neild, D.J. Wagg: Vibration suppression of cables using tuned inerter dampers, Engineering Structures 122 (2016) 62–71. https://doi.org/10.1016/j.engstruct.2016.04.017. [CrossRef] [Google Scholar]
  21. P. Brzeski, M. Lazarek, P. Perlikowski: Experimental study of the novel tuned mass damper with inerter which enables changes of inertance, Journal of Sound and Vibration 404 (2017) 47–57. https://doi.org/10.1016/j.jsv.2017.05.034. [CrossRef] [Google Scholar]
  22. S. Zhou, C. Jean-Mistral, S. Chesne: Influence of inerters on the vibration control effect of series double tuned mass dampers: two layouts and analytical study, Structural Control and Health Monitoring 26 (2019) e2414. https://doi.org/10.1002/stc.2414. [Google Scholar]
  23. S.J. Swift, M.C. Smith, A.R. Glover, C. Papageorgiou, B. Gartner, N.E. Houghton: Design and modelling of a fluid inerter, International Journal of Control 86 (2013) 2035–2051. https://doi.org/10.1080/00207179.2013.842263. [CrossRef] [Google Scholar]
  24. S. Zhou, J. Huang, Q. Yuan, D. Ma, S. Peng, S. Chesne: Optimal design of tuned mass-damper-inerter for structure with uncertain-but-bounded parameter, Buildings 12 (2022) 781. https://doi.org/10.3390/buildings12060781. [CrossRef] [Google Scholar]
  25. N. Alujević, D. Čakmak, H. Wolf, M. Jokić: Passive and active vibration isolation systems using inerter, Journal of Sound and Vibration 418 (2018) 163–183. https://doi.org/10.1016/j.jsv.2017.12.031. [CrossRef] [Google Scholar]
  26. N. Alujević, I. Senjanović, I. Ćatipović, N. Vladimir: The absence of reciprocity in active structures using direct velocity feedback, Journal of Sound and Vibration 438 (2018) 251–256. https://doi.org/10.1016/j.jsv.2018.09.035. [Google Scholar]
  27. M. Jalšić, N. Alujević, I. Ćatipović, I. Senjanović: Active metamaterial cell using non-collocated velocity feedback, in: Proceedings of DAGA 2022, Stuttgart and online, 21–24 March, 2022. [Google Scholar]
  28. S. Arandia-Krešić, N. Alujević, I. Ćatipović, M. Jokić: Nonreciprocal vibration transmission using dislocated displacement feedback, 2023. Available at https://ssrn.com/abstract=4545596. [Google Scholar]
  29. K. Zhao, P. Okolo, E. Neri, P. Chen, J. Kennedy, G.J. Bennett: Noise reduction technologies for aircraft landing gear – a bibliographic review, Progress in Aerospace Sciences 112 (2020) 100589. https://doi.org/10.1016/j.paerosci.2019.100589. [CrossRef] [Google Scholar]
  30. M. Bäcker, A. Gallrein, M. Roller: Noise, vibration, harshness model of a rotating tyre, Vehicle System Dynamics 54 (2016) 474–491. https://doi.org/10.1080/00423114.2016.1158844. [CrossRef] [Google Scholar]
  31. J. Cheer, S.J. Elliott: Multichannel control systems for the attenuation of interior road noise in vehicles, Mechanical Systems and Signal Processing 60–61 (2015) 753–769. https://doi.org/10.1016/j.ymssp.2015.01.008. [CrossRef] [Google Scholar]
  32. X. Pike, J. Cheer: Active noise and vibration control of systems with primary path nonlinearities using FxLMS, Neural Networks and Recursive Neural Networks, Journal of the Acoustical Society of America 150 (2021) A345. https://doi.org/10.1121/10.0008532. [CrossRef] [Google Scholar]
  33. J.P. Den Hartog: Mechanical vibrations, McGraw-Hill, New York, USA, 1956. [Google Scholar]
  34. H. Frahm: Device for damping vibrations of bodies, 1911. Available at http://www.freepatentsonline.com/0989958.html. [Google Scholar]
  35. S.S. Rao: Mechanical vibrations, 5th edn., Prentice Hall, Upper Saddle. River, NJ, USA, 2011. [Google Scholar]
  36. A. Preumont: Vibration control of active structures, vol. 246, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-72296-2. [CrossRef] [Google Scholar]
  37. M.J. Balas: Direct velocity feedback control of large space structures, Journal of Guidance and Control 2 (1979) 252–253. https://doi.org/10.2514/3.55869. [CrossRef] [Google Scholar]
  38. N. Alujević, I. Tomac, P. Gardonio: Tuneable vibration absorber using acceleration and displacement feedback, Journal of Sound and Vibration 331 (2012) 2713–2728. https://doi.org/10.1016/j.jsv.2012.01.012. [CrossRef] [Google Scholar]
  39. P. Gardonio, S.J. Elliott: Modal response of a beam with a sensor–actuator pair for the implementation of velocity feedback control, Journal of Sound and Vibration 284 (2005) 1–22. https://doi.org/10.1016/j.jsv.2004.06.018. [CrossRef] [Google Scholar]
  40. B. de Marneffe, M. Avraam, A. Deraemaeker, M. Horodinca, A. Preumont: Vibration isolation of precision payloads: a six-axis electromagnetic relaxation isolator, Journal of Guidance, Control, and Dynamics 32 (2009) 395–401. https://doi.org/10.2514/1.39414. [CrossRef] [Google Scholar]
  41. O.A. Marzouk, A.H. Nayfeh: Control of ship roll using passive and active anti-roll tanks, Ocean Engineering 36 (2009) 661–671. https://doi.org/10.1016/j.oceaneng.2009.03.005. [CrossRef] [Google Scholar]
  42. N. Alujević, I. Ćatipović, Š. Malenica, I. Senjanović, N. Vladimir: Stability, performance and power flow of active U-tube anti-roll tank, Engineering Structures 211 (2020) 110267. https://doi.org/10.1016/j.engstruct.2020.110267. [CrossRef] [Google Scholar]
  43. S. Arandia-Krešić, N. Alujević, S. Turalija, M. Jalšić: Active realisation of the inerter by relative acceleration feedback, Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2024 (2023) 5245–5252. https://doi.org/10.61782/fa.2023.0465. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.