Issue |
Acta Acust.
Volume 8, 2024
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
|
|
---|---|---|
Article Number | 67 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/aacus/2024074 | |
Published online | 06 December 2024 |
- G. Bissinger, E.G. Williams, N. Valdivia: Violin f-hole contribution to far-field radiation via patch near-field acoustical holography. Journal of the Acoustical Society of America 121 (2007) 3899–3906. [CrossRef] [PubMed] [Google Scholar]
- H. Itokawa, C. Kumagai: Research on violin making. Institute of Industrial Science University of Tokyo 3 (1942) 5–19. [Google Scholar]
- J.C. Schelleng: The violin as a circuit. Journal of the Acoustical Society of America 35 (1963) 326–338. [CrossRef] [Google Scholar]
- K.D. Marshall: Modal analysis of a violin. Journal of the Acoustical Society of America 77 (1985) 695–709. [CrossRef] [Google Scholar]
- C. Gough: Violin plate modes. Journal of the Acoustical Society of America 137 (2015) 139–153. [CrossRef] [PubMed] [Google Scholar]
- C. Gough: The violin bridge-island input filter. Journal of the Acoustical Society of America 143 (2018) 1–12. [CrossRef] [PubMed] [Google Scholar]
- F.A. Saunders: Recent work on violins. Journal of the Acoustical Society of America 25 (1953) 491–498. [CrossRef] [Google Scholar]
- A. Isaksson, H.O. Saldner, N.-E. Molin: Influence of enclosed air on vibration modes of a shell structure, Journal of Sound and Vibration 187 (1995) 451–466. [CrossRef] [Google Scholar]
- G. Weinreich, C. Holmes, M. Mellody: Air-wood coupling and the swiss-cheese violin. Journal of the Acoustical Society of America 108 (2000) 2389–2402. [CrossRef] [PubMed] [Google Scholar]
- L. Cremer: The Physics of the Violin, MIT Press. 1984. [Google Scholar]
- E.A.G. Shaw: Cavity resonance in the violin: Network representation and the effect of damped and undamped rib holes. Journal of the Acoustical Society of America 87 (1990) 398–410. [CrossRef] [Google Scholar]
- G. Bissinger: Effect of f-hole shape, area, and position on violin cavity modes below 2 kHz. Catgut Acoustical Society Journal 2 (1992) 12–17. [Google Scholar]
- G. Bissinger: A0 and A1 coupling, arching, rib height, and f-hole geometry dependence in the 2 degree-of-freedom network model of violin cavity modes, Journal of the Acoustical Society of America 104 (1998) 3608–3615. [CrossRef] [Google Scholar]
- C.M. Hutchins: A 30-year experiment in the acoustical and musical development of violin-family instruments. Journal of the Acoustical Society of America 92 (1992) 639–650. [CrossRef] [Google Scholar]
- G. Bissinger: Acoustic normal modes below 4 kHz for a rigid, closed violin-shaped cavity. Journal of the Acoustical Society of America 100 (1996) 1835–1840. [CrossRef] [Google Scholar]
- H.T. Nia, A.D. Jain, Y. Liu, M.-R. Alam, R. Barnas, N.C. Makris: The evolution of air resonance power efficiency in the violin and its ancestors. Proceedings of the Royal Society A 471 (2015) 1–26. [Google Scholar]
- A.D. Pierce: Acoustics, Springer International Publishing. 2019. [CrossRef] [PubMed] [Google Scholar]
- J. Bretos, C. Santamaría, J.A. Moral: Vibrational patterns and frequency responses of the free plates and box of a violin obtained by finite element analysis. Journal of the Acoustical Society of America 105 (1999) 1942–1950. [CrossRef] [Google Scholar]
- R. Viala: Towards a model-based decision support tool for stringed musical instruments making. Doctoral Dissertation, Université Bourgogne Franche-Comté, 2018. [Google Scholar]
- H. Tahvanainen, H. Matsuda, R. Shinoda: Numerical simulation of the acoustic guitar for virtual prototyping, Proceedings of ISMA 2019 (2019) 13–17. [Google Scholar]
- S. Gonzalez, D. Salvi, D. Baeza, F. Antonacci, A. Sarti: A data-driven approach to violin making. Scientific Reports 11 (2021) 1–10. [CrossRef] [PubMed] [Google Scholar]
- A. Brauchler, P. Ziegler, P. Eberhard: An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data. Journal of the Acoustical Society of America 149 (2021) 4450–4462. [CrossRef] [PubMed] [Google Scholar]
- M. Yokoyama: Coupled numerical simulations of the structure and acoustics of a violin body. Journal of the Acoustical Society of America 150 (2021) 2058–2064. [CrossRef] [PubMed] [Google Scholar]
- R. Viala, V. Placet, S. Leconte, S. Vaiedelich, S. Vaiedelich, S. Cogan: Model-based decision support methods applied to the conservation of musical instruments: Application to an antique cello, in 37th Conference and Exposition on Structural Dynamics, Orlando, Florida. 2019, pp. 1–7. [Google Scholar]
- Ansys Mechanical, 2022 ANSYS Inc. [Google Scholar]
- T. Sakuma, Y. Yasuda: Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: Setup and validation. Acta Acustica United with Acustica 88 (2002) 513–525. [Google Scholar]
- Architectural Institute of Japan: Computational simulation of sound environment: techniques and applications of wave-based acoustics, Maruzen Publishing. 2021. [Google Scholar]
- S.D. Bellows, D. Nakayama: Modeling and measurements of the f-hole shape’s influence on the bending modes of a fractional-size violin, in: 10th Convention of the European Acoustics Association, Italy. 2023, pp. 1193–1200. [Google Scholar]
- ISO3745: Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Precision methods for anechoic rooms and hemi-anechoic rooms. International Organization for Standardization, Switzerland, Geneva. 2012. [Google Scholar]
- A. Mamou-Mani, J. Frelat, C. Besnainou: Numerical simulation of a piano soundboard under downbearing. Journal of the Acoustical Society of America 123 (2008) 2401–2406. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.