Open Access
Review
Issue |
Acta Acust.
Volume 8, 2024
|
|
---|---|---|
Article Number | 66 | |
Number of page(s) | 18 | |
Section | Ultrasonics | |
DOI | https://doi.org/10.1051/aacus/2024069 | |
Published online | 06 December 2024 |
- C. Gao, B. Cai, C. Sheng, Y. Liu, K. Liu, J.A. Khan, M. Shi, Z. Liu, R. Ji: Life Cycle Structural integrity design approach for the components of subsea production system: SCSSV as a case study, IEEE/ASME Transactions on Mechatronics 29, 4 (2024) 2768–2778. https://doi.org/10.1109/TMECH.2023.3329831. [CrossRef] [Google Scholar]
- M. Abbas, M. Shafiee: An overview of maintenance management strategies for corroded steel structures in extreme marine environments, Marine Structures (2020) 71, 102718. https://doi.org/10.1016/j.marstruc.2020.102718. [CrossRef] [Google Scholar]
- M. Attia, J. Sinha: Improved quantitative risk model for integrity management of liquefied petroleum gas storage tanks: mathematical basis, and case study, Process Safety Progress 40 (2021) 63–78. https://doi.org/10.1002/prs.12217. [CrossRef] [Google Scholar]
- S.J. Jin, X. Sun, Z.B. Luo, T.T. Ma, L. Lin: Quantitative detection of shallow subsurface cracks in pipeline with time-of-flight diffraction technique, NDT&E International 118 (2021) 102397. https://doi.org/10.1016/j.ndteint.2020.102397. [CrossRef] [Google Scholar]
- T.B. Quy, J.-M. Kim: Crack detection and localization in a fluid pipeline based on acoustic emission signals, Mechanical Systems and Signal Processing 150 (2021) 107254. https://doi.org/10.1016/j.ymssp.2020.107254. [CrossRef] [Google Scholar]
- Q. Liu, Z. Qin, Z. Zou, Q. Lv, Y. Li, J. Guo: Study on inclined cracks in pressure vessels based on optical fiber ultrasonic sensors, Optical Fiber Technology 66 (2021) 102637. https://doi.org/10.1016/j.yofte.2021.102637. [CrossRef] [Google Scholar]
- B.B. Babamiri, J. Indeck, G. Demeneghi, J. Cuadra, K. Hazeli: Quantification of porosity and microstructure and their effect on quasi-static and dynamic behavior of additively manufactured Inconel 718, Additive Manufacturing 34 (2020) 101380. https://doi.org/10.1016/j.addma.2020.101380. [CrossRef] [Google Scholar]
- P. Gauthier, M. Javidani, T. Wang, J. Evans: Formation mechanisms of surface blistering in AA6xxx rolled products: microstructure characterisation, ultrasonic analysis, and rolling tests results, International Journal of Cast Metals Research 35 (2022) 169–180. https://doi.org/10.1080/13640461.2023.2172372. [CrossRef] [Google Scholar]
- F. Bologna, M. Tannous, D. Romano, C. Stefanini: Automatic welding imperfections detection in a smart factory via 2-D laser scanner, Journal of Manufacturing Processes 73 (2022) 948–960. https://doi.org/10.1016/j.jmapro.2021.10.046. [CrossRef] [Google Scholar]
- J.R. Deepak, V.K. Bupesh Raja, D. Srikanth, H. Surendran, M.M. Nickolas: Non-destructive testing (NDT) techniques for low carbon steel welded joints: a review and experimental study, Materials Today: Proceedings 44 (2021) 3732–3737. https://doi.org/10.1016/j.matpr.2020.11.578. [CrossRef] [Google Scholar]
- X. Liu, Z. Guo, D. Bai, C. Yuan: Study on the mechanical properties and defect detection of low alloy steel weldments for large cruise ships, Ocean Engineering 258 (2022) 111815. https://doi.org/10.1016/j.oceaneng.2022.111815. [CrossRef] [Google Scholar]
- X. Zang, Z.-D. Xu, H. Lu, C. Zhu, Z. Zhang: Ultrasonic guided wave techniques and applications in pipeline defect detection: a review, International Journal of Pressure Vessels 206 (2023) 105033. https://doi.org/10.1016/j.ijpvp.2023.105033. [CrossRef] [Google Scholar]
- X. Wang, L. Yang, T. Sun, G. Rasool, M. Sun, N. Hu, Z. Guo: A review of development and application of out-of-pipe detection technology without removing cladding, Measurement 219 (2023) 113249. https://doi.org/10.1016/j.measurement.2023.113249. [CrossRef] [Google Scholar]
- R. Guilizzoni, G. Finch, S. Harmon: Subsurface corrosion detection in industrial steel structures, IEEE Magnetics Letters 10 (2019) 1–5. https://doi.org/10.1109/LMAG.2019.2948808. [CrossRef] [Google Scholar]
- S. Bott, R. MacKenzie, M. Hill, T. Hennig: At the forefront of in-line crack inspection services: a highly versatile crack inspection platform for complex flaw morphologies and absolute depth sizing, in: Proceedings of the 2020 13th International Pipeline Conference. Volume 1: Pipeline and Facilities Integrity, Virtual, Online, September 28–30, American Society of Mechanical Engineers Digital Collection, 2021. https://doi.org/10.1115/IPC2020-9386. [Google Scholar]
- A. Aulin, K. Shahzad, R. MacKenzie, S. Bott: Comparison of non-destructive examination techniques for crack inspection, in: Proceedings of the 2020 13th International Pipeline Conference, Volume 1: Pipeline and Facilities Integrity, Virtual, Online, September 28–30, American Society of Mechanical Engineers Digital Collection, 2021. https://doi.org/10.1115/IPC2020-9508. [Google Scholar]
- B.S. Marció, P. Nienheysen, D. Habor, R.C.C. Flesch: Quality assessment and deviation analysis of three-dimensional geometrical characterization of a metal pipeline by pulse-echo ultrasonic and laser scanning techniques, Measurement 145 (2019) 30–37. https://doi.org/10.1016/j.measurement.2019.05.084. [CrossRef] [Google Scholar]
- P. Cawley: Guided waves in long range nondestructive testing and structural health monitoring: principles, history of applications and prospects, NDT&E International 142 (2024) 103026. https://doi.org/10.1016/j.ndteint.2023.103026. [CrossRef] [Google Scholar]
- Y. Wang, L. Qiu, Y. Luo, R. Ding: A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring, Structural Health Monitoring 20 (2021) 861–876. https://doi.org/10.1177/1475921719850641. [CrossRef] [Google Scholar]
- W. Shao, H. Sun, Y. Wang, X. Qing: A multi-level damage classification technique of aircraft plate structures using Lamb wave-based deep transfer learning network, Smart Materials and Structures 31 (2022) 075019. https://doi.org/10.1088/1361-665X/ac726f. [CrossRef] [Google Scholar]
- D.F. Ball, D. Shewring: Some problems in the use of Lamb waves for the inspection of cold-rolled steel sheet and coil, Non-destructive Testing 6 (1973) 138–145. https://doi.org/10.1016/0029-1021(73)90015-7. [CrossRef] [Google Scholar]
- G. Watzl, C. Kerschbaummayr, M. Schagerl, T. Mitter, B. Sonderegger, C. Grünsteidl: In situ laser-ultrasonic monitoring of Poisson’s ratio and bulk sound velocities of steel plates during thermal processes, Acta Materialia 235 (2022) 118097. https://doi.org/10.1016/j.actamat.2022.118097. [CrossRef] [Google Scholar]
- L. Chehami, E. Moulin, J. de Rosny, C. Prada, O. Bou Matar, F. Benmeddour, J. Assaad: Detection and localization of a defect in a reverberant plate using acoustic field correlation, Journal of Applied Physics 115 (2014) 104901. https://doi.org/10.1063/1.4867522. [CrossRef] [Google Scholar]
- G. Giridhara, V.T. Rathod, S. Naik, D. Roy Mahapatra, S. Gopalakrishnan: Rapid localization of damage using a circular sensor array and Lamb wave based triangulation, Mechanical Systems and Signal Processing 24 (2010) 2929–2946. https://doi.org/10.1016/j.ymssp.2010.06.002. [CrossRef] [Google Scholar]
- S. Yu, C. Fan, Y. Zhao, L. Chen, B. Gao, L. Yang: Lamb wave based total focusing method for integral grid-stiffened plate damage identification, IEEE Sensors Journal 22 (2022) 15769–15781. https://doi.org/10.1109/JSEN.2022.3187466. [CrossRef] [Google Scholar]
- M. Radzieński, Ł. Doliński, M. Krawczuk, M. Palacz: Damage localisation in a stiffened plate structure using a propagating wave, Mechanical Systems and Signal Processing 39 (2013) 388–395. https://doi.org/10.1016/j.ymssp.2013.02.014. [CrossRef] [Google Scholar]
- N. Mori, S. Biwa, T. Kusaka: Damage localization method for plates based on the time reversal of the mode-converted Lamb waves, Ultrasonics 91 19–29. https://doi.org/10.1016/j.ultras.2018.07.007. [Google Scholar]
- D.N. Alleyne, P. Cawley: Optimization of Lamb wave inspection techniques, NDT&E International 25 (1992) 11–22. https://doi.org/10.1016/0963-8695(92)90003-Y. [CrossRef] [Google Scholar]
- P.D. Wilcox, M.J.S. Lowe, P. Cawley: Mode and transducer selection for long range Lamb wave inspection, Journal of Intelligent Materials Systems 12 (2001) 553–565. https://doi.org/10.1177/10453890122145348. [Google Scholar]
- H. Lamb: On waves in an elastic plate, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physica 93 (1917) 114–128. https://doi.org/10.1098/rspa.1917.0008. [Google Scholar]
- J.L. Rose: Ultrasonic waves in solid media, Cambridge University Press, Cambridge, 1999. [Google Scholar]
- J.D. Achenbach: Wave propagation in elastic solids: North-Holland series in applied mathematics and mechanics, Elsevier, New York, 2016. [Google Scholar]
- T. Stepinski, M. Mańka, A. Martowicz: Interdigital Lamb wave transducers for applications in structural health monitoring, NDT&E International 86 (2017) 199–210. https://doi.org/10.1016/j.ndteint.2016.10.007. [CrossRef] [Google Scholar]
- D.N. Alleyne, P. Cawley: The interaction of Lamb waves with defects, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 39 (1992) 381–397. https://doi.org/10.1109/58.143172. [CrossRef] [PubMed] [Google Scholar]
- P. Khalili, P. Cawley: Relative ability of wedge-coupled piezoelectric and meander coil EMAT probes to generate single-mode Lamb waves, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 65 (2018) 648–656. https://doi.org/10.1109/TUFFC.2018.2800296. [CrossRef] [PubMed] [Google Scholar]
- P. Khalili, P. Cawley: Excitation of single-mode Lamb waves at high-frequency-thickness products, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 63 (2016) 303–312. https://doi.org/10.1109/TUFFC.2015.2507443. [CrossRef] [PubMed] [Google Scholar]
- L. Satyarnarayan, J. Chandrasekaran, B. Maxfield, K. Balasubramaniam: Circumferential higher order guided wave modes for the detection and sizing of cracks and pinholes in pipe support regions, NDT&E International 41 (2008) 32–43. https://doi.org/10.1016/j.ndteint.2007.07.004. [CrossRef] [Google Scholar]
- J.J. Ditri, J.L. Rose, A. Pilarski: Generation of guided waves in hollow cylinders by wedge and comb type transducers, in: D.O. Thompson, D.E. Chimenti (eds.), Review of progress in quantitative nondestructive evaluation, vol. 12A 12B, Springer US, Boston, MA, 1993, pp. 211–218. https://doi.org/10.1007/978-1-4615-2848-7_26. [CrossRef] [Google Scholar]
- V.Y. Senyurek: Detection of cuts and impact damage at the aircraft wing slat by using Lamb wave method, Measurement 67 (2015) 10–23. https://doi.org/10.1016/j.measurement.2015.02.007. [CrossRef] [Google Scholar]
- L. Yu, Z. Tian, C.A.C. Leckey: Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods, Ultrasonics 62 (2015) 203–212. https://doi.org/10.1016/j.ultras.2015.05.019. [CrossRef] [PubMed] [Google Scholar]
- J.L. Rose, S.P. Pelts, M.J. Quarry: A comb transducer model for guided wave NDE, Ultrasonics 36 (1998) 163–169. https://doi.org/10.1016/S0041-624X(97)00042-5. [CrossRef] [Google Scholar]
- Y. Zhu, X. Zeng, M. Deng, K. Han, D. Gao: Detection of nonlinear Lamb wave using a PVDF comb transducer, NDT&E International 93 (2018) 110–116. https://doi.org/10.1016/j.ndteint.2017.09.012. [CrossRef] [Google Scholar]
- R.S.C. Monkhouse, P.W. Wilcox, M.J.S. Lowe, R.P. Dalton, P. Cawley: The rapid monitoring of structures using interdigital Lamb wave transducers, Smart Materials and Structures 9 (2000) 304. https://doi.org/10.1088/0964-1726/9/3/309. [CrossRef] [Google Scholar]
- D. Zuljan: Effect of ultrasonic coupling media and surface roughness on contact transfer loss, Cogent Engineering 9 (2022) 2009092. https://doi.org/10.1080/23311916.2021.2009092. [CrossRef] [Google Scholar]
- M.M. Islam, H. Huang: Effects of adhesive thickness on the Lamb wave pitch-catch signal using bonded piezoelectric wafer transducers, Smart Materials and Structures 25 (2016) 085014. https://doi.org/10.1088/0964-1726/25/8/085014. [CrossRef] [Google Scholar]
- E.C. Ashigwuike, O.J. Ushie, R. Mackay, W. Balachandran: A study of the transduction mechanisms of electromagnetic acoustic transducers (EMATs) on pipe steel materials, Sensors and Actuators A: Physical 229 (2015) 154–165. https://doi.org/10.1016/j.sna.2015.03.034. [CrossRef] [Google Scholar]
- H. Liu, T. Liu, Y. Li, Y. Liu, X. Zhang, Y. Wang, S. Gao: Uniaxial stress in-situ measurement using EMAT shear and longitudinal waves: Transducer design and experiments, Applied Acoustics 175 (2021) 107781. https://doi.org/10.1016/j.apacoust.2020.107781. [CrossRef] [Google Scholar]
- N. Nakamura, H. Ogi, M. Hirao: EMAT pipe inspection technique using higher mode torsional guided wave T(0, 2), NDT&E International 87 (2017) 78–84. https://doi.org/10.1016/j.ndteint.2017.01.009. [CrossRef] [Google Scholar]
- J. Tu, Z. Zhong, X. Song, X. Zhang, Z. Deng, M. Liu: An external through type RA-EMAT for steel pipe inspection, Sensors and Actuators A: Physical 331 (2021) 113053. https://doi.org/10.1016/j.sna.2021.113053. [CrossRef] [Google Scholar]
- C. Peyton, S. Dixon, B. Dutton, W. Vesga, R.S. Edwards: Reflection behaviour of SH0 from small defects in thin sheets, with application to EMAT inspection of titanium, Nondestructive Testing and Evaluation 39 (2024) 1–24. https://doi.org/10.1080/10589759.2023.2299787. [Google Scholar]
- C. Pei, T. Liu, H. Chen, Z. Chen: Inspection of delamination defect in first wall with a flexible EMAT-scanning system, Fusion Engineering and Design 136 (2018) 549–553. https://doi.org/10.1016/j.fusengdes.2018.03.018. [CrossRef] [Google Scholar]
- J. Tkocz, S. Dixon: Electromagnetic acoustic transducer optimisation for surface wave applications, NDT&E International 107 (2019) 102142. https://doi.org/10.1016/j.ndteint.2019.102142. [CrossRef] [Google Scholar]
- O. Trushkevych, R.S. Edwards: Characterisation of small defects using miniaturised EMAT system, NDT&E International 107 (2019) 102140. https://doi.org/10.1016/j.ndteint.2019.102140. [CrossRef] [Google Scholar]
- M. Hirao, H. Ogi: Electromagnetic acoustic transducers: noncontacting ultrasonic measurements using EMATs, Springer Japan, Tokyo, 2017. https://doi.org/10.1007/978-4-431-56036-4. [CrossRef] [Google Scholar]
- J. Tkocz, D. Greenshields, S. Dixon: High power phased EMAT arrays for nondestructive testing of as-cast steel, NDT&E International 102 (2019) 47–55. https://doi.org/10.1016/j.ndteint.2018.11.001. [CrossRef] [Google Scholar]
- B. Lei, P. Yi, J. Xiang, W. Xu: A SVD-based signal de-noising method with fitting threshold for EMAT, IEEE Access 9 (2021) 21123–21131. https://doi.org/10.1109/ACCESS.2021.3052185. [CrossRef] [Google Scholar]
- S.E. Lee, P. Liu, Y.W. Ko, H. Sohn, B. Park, J.-W. Hong: Study on effect of laser-induced ablation for Lamb waves in a thin plate, Ultrasonics 91 (2019) 121–128. https://doi.org/10.1016/j.ultras.2018.07.019. [CrossRef] [PubMed] [Google Scholar]
- F. Qian, G. Xing, P. Yang, P. Hu, L. Zou, T. Koukoulas: Laser-induced ultrasonic measurements for the detection and reconstruction of surface defects, Acta Acustica 5 (2021) 38. https://doi.org/10.1051/aacus/2021031. [CrossRef] [EDP Sciences] [Google Scholar]
- C. Rembe, L. Mignanelli: Introduction to laser-doppler vibrometry, in: K. Kroschel (ed.), Laser doppler vibrometry for non-contact diagnostics, Springer International Publishing, Cham, 2020, pp. 9–21. https://doi.org/10.1007/978-3-030-46691-6_2. [CrossRef] [Google Scholar]
- N. Hosoya, R. Umino, A. Kanda, I. Kajiwara, A. Yoshinaga: Lamb wave generation using nanosecond laser ablation to detect damage, Journal of Vibration and Control 24 (2018) 5842–5853. https://doi.org/10.1177/1077546316687904. [CrossRef] [Google Scholar]
- D. Veira Canle, A. Salmi, E. Hæggström: Non-contact damage detection on a rotating blade by Lamb wave analysis, NDT&E International 92 (2017) 159–166. https://doi.org/10.1016/j.ndteint.2017.08.008. [CrossRef] [Google Scholar]
- P. Khalili, P. Cawley: The choice of ultrasonic inspection method for the detection of corrosion at inaccessible locations, NDT&E International 99 (2018) 80–92. https://doi.org/10.1016/j.ndteint.2018.06.003. [CrossRef] [Google Scholar]
- M. Philibert, K. Yao, M. Gresil, C. Soutis: Lamb waves-based technologies for structural health monitoring of composite structures for aircraft applications, European Journal of Materials 2 (2022) 436–474. https://doi.org/10.1080/26889277.2022.2094839. [CrossRef] [Google Scholar]
- M.J. Ranjbar Naserabadi, S. Sodagar: Ultrasonic high frequency Lamb waves for evaluation of plate structures, Acoustical Physics 63 (2017) 402–409. https://doi.org/10.1134/S106377101704011X. [CrossRef] [Google Scholar]
- K. Tzaferis, M. Tabatabaeipour, G. Dobie, D. Lines, C.N. MacLeod: Single-mode Lamb wave excitation at high-frequency-thickness products using a conventional linear array transducer, Ultrasonics 130 (2023) 106917. https://doi.org/10.1016/j.ultras.2022.106917. [CrossRef] [PubMed] [Google Scholar]
- Z. Abbasi, F. Honarvar: Evaluation of the sensitivity of higher order modes cluster (HOMC) guided waves to plate defects, Applied Acoustics 187 (2022) 108512. https://doi.org/10.1016/j.apacoust.2021.108512. [CrossRef] [Google Scholar]
- D. Silitonga, N.F. Declercq, P. Pomarède, F. Meraghni, B. Boussert, P. Dubey: Ultrasonic guided waves interaction with cracks in the front glass of thin-film solar photovoltaic module, Solar Energy Materials and Solar Cells 251 (2023) 112179. https://doi.org/10.1016/j.solmat.2022.112179. [CrossRef] [Google Scholar]
- S. Kumar, M.R. Sunny: A novel nonlinear Lamb wave based approach for detection of multiple disbonds in adhesive joints, International Journal of Adhesion and Adhesives 107 (2021) 102842. https://doi.org/10.1016/j.ijadhadh.2021.102842. [CrossRef] [Google Scholar]
- V.P. Venugopal, G. Wang: Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing, Journal of Intelligent Materials Systems 26 (2015) 1679–1698. https://doi.org/10.1177/1045389X14536010. [Google Scholar]
- J.E. Michaels: Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors, Smart Materials and Structures 17 (2008) 035035. https://doi.org/10.1088/0964-1726/17/3/035035. [CrossRef] [Google Scholar]
- D.N. Alleyne, P. Cawley: The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers, Journal of Nondestructive Evaluation 15 (1996) 11–20. https://doi.org/10.1007/BF00733822. [CrossRef] [Google Scholar]
- S. Moustakidis, V. Kappatos, P. Karlsson, C. Selcuk, T.-H. Gan, K. Hrissagis: An intelligent methodology for railways monitoring using ultrasonic guided waves, Journal of Nondestructive Evaluation 33 (2014) 694–710. https://doi.org/10.1007/s10921-014-0264-6. [CrossRef] [Google Scholar]
- Z.Y. Dong, H.-T. Wang, X.-M. Yang, X. Li, J. Xu, M.-H. Jiang: Research for evaluation method based on Lamb waves for thickness of ship deck beams, Russian Journal of Nondestructive Testing 56 (2020) 556–565. https://doi.org/10.1134/S1061830920070049. [CrossRef] [Google Scholar]
- F. Yeo, P. Fromme: Guided ultrasonic wave inspection of corrosion at ship hull structures, AIP Conference Proceedings 820 (2006) 202–209. https://doi.org/10.1063/1.2184530. [CrossRef] [Google Scholar]
- P. Puthillath, J.L. Rose: Ultrasonic guided wave inspection of a titanium repair patch bonded to an aluminum aircraft skin, International Journal of Adhesion and Adhesives 30 (2010) 566–573. https://doi.org/10.1016/j.ijadhadh.2010.05.008. [CrossRef] [Google Scholar]
- N. Terrien, D. Royer, F. Lepoutre, A. Déom: Numerical predictions and experiments for optimizing hidden corrosion detection in aircraft structures using Lamb modes, Ultrasonics 46 (2007) 251–265. https://doi.org/10.1016/j.ultras.2007.02.004. [CrossRef] [PubMed] [Google Scholar]
- M.R. Papanaboina, E. Jasiuniene: The defect identification and localization using ultrasonic guided waves in aluminum alloy, in: 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Naples, Italy, 23–25 June, IEEE, 2021, pp. 490–493. https://doi.org/10.1109/MetroAeroSpace51421.2021.9511673. [Google Scholar]
- R. Raišutis, K.A. Tiwari, E. Žukauskas, O. Tumšys, L. Draudvilienė: A novel defect estimation approach in wind turbine blades based on phase velocity variation of ultrasonic guided waves, Sensors 21 (2021) 4879. https://doi.org/10.3390/s21144879. [CrossRef] [PubMed] [Google Scholar]
- C.Q. Gómez Muñoz, F.P. García Marquez, B. Hernandez Crespo, K. Makaya: Structural health monitoring for delamination detection and location in wind turbine blades employing guided waves, Wind Energy 22 (2019) 698–711. https://doi.org/10.1002/we.2316. [CrossRef] [Google Scholar]
- Y. Li, C. He, Y. Lyu, G. Song, B. Wu: Crack detection in monocrystalline silicon solar cells using air-coupled ultrasonic Lamb waves, NDT&E International 102 (2019) 129–136. https://doi.org/10.1016/j.ndteint.2018.11.020. [CrossRef] [Google Scholar]
- D. Silitonga, N.F. Declercq, F. Meraghni, B. Boussert: Front glass crack inspection of thin-film solar photovoltaic modules using high-order ultrasonic Lamb waves, Solar Energy 274 (2024) 112578. https://doi.org/10.1016/j.solener.2024.112578. [CrossRef] [Google Scholar]
- W.P. Rogers: Elastic property measurement using Rayleigh-Lamb waves, Research in Nondestructive Evaluation 6 (1995) 185–208. https://doi.org/10.1007/BF01606381. [CrossRef] [Google Scholar]
- O. Tumšys, L. Mažeika: Determining the elastic constants of isotropic materials by measuring the phase velocities of the A0 and S0 modes of Lamb waves, Sensors 23 (2023) 6678. https://doi.org/10.3390/s23156678. [CrossRef] [PubMed] [Google Scholar]
- N. Korde, T. Kundu: Material hardness and ageing measurement using guided ultrasonic waves, Ultrasonics 53 (2013) 506–510. https://doi.org/10.1016/j.ultras.2012.09.003. [CrossRef] [PubMed] [Google Scholar]
- P.S. Tua, S.T. Quek, Q. Wang: Detection of cracks in plates using piezo-actuated Lamb waves, Smart Materials and Structures 13 (2004) 643. https://doi.org/10.1088/0964-1726/13/4/002. [CrossRef] [Google Scholar]
- L. Adler, P.B. Nagy, Q. Xue: Ultrasonic surface waves and Lamb waves in fluid saturated porous solids, Proceedings of IEEE Ultrasonics Symposium 2 (1989) 1215–1219. https://doi.org/10.1109/ULTSYM.1989.67182. [CrossRef] [Google Scholar]
- W. Dai, X. Wang, M. Zhang, W. Zhang, R. Wang: Corrosion monitoring method of porous aluminum alloy plate hole edges based on piezoelectric sensors, Sensors 19 (2019) 1106. https://doi.org/10.3390/s19051106. [CrossRef] [PubMed] [Google Scholar]
- D.L. Fecko, J.W. Gillespie, K.V. Steiner: Use of ultrasonic Lamb waves for in-process porosity inspection of the pultrusion process: theoretical velocity calculations, in: D.O. Thompson, D.E. Chimenti (eds.), Review of progress in quantitative nondestructive evaluation, vol. 15A, Springer US, Boston, MA, 1996, pp. 1231–1238. https://doi.org/10.1007/978-1-4613-0383-1_160. [CrossRef] [Google Scholar]
- A. Dawson, P. Harris, G. Gouws: High frequency ultrasonic wave propagation in porous aluminium, in: S.C. Mukhopadhyay, G.S. Gupta (eds.), Smart sensors and sensing technology, Springer, Berlin, Heidelberg, 2008, pp.221–232. https://doi.org/10.1007/978-3-540-79590-2_15. [CrossRef] [Google Scholar]
- G. Shkerdin, C. Glorieux: Interaction of Lamb modes with an inclusion, Ultrasonics 53 (2013) 130–140. https://doi.org/10.1016/j.ultras.2012.04.008. [CrossRef] [PubMed] [Google Scholar]
- L. Zeng, Z. Luo, J. Lin, J. Hua: Excitation of Lamb waves over a large frequency-thickness product range for corrosion detection, Smart Materials and Structures 26 (2017) 095012. https://doi.org/10.1088/1361-665X/aa7774. [CrossRef] [Google Scholar]
- P.B. Nagy, F. Simonetti, G. Instanes: Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection, Ultrasonics 54 (2014) 1832–1841. https://doi.org/10.1016/j.ultras.2014.01.017. [CrossRef] [PubMed] [Google Scholar]
- N. Andruschak, I. Saletes, T. Filleter, A. Sinclair: An NDT guided wave technique for the identification of corrosion defects at support locations, NDT&E International 75 (2015) 72–79. https://doi.org/10.1016/j.ndteint.2015.06.007. [CrossRef] [Google Scholar]
- R. Sun, W. Li, C. Liu, P. Jiang, C. Yang, F. Yang: Characterization of crack damages in composite materials by using frequency- and time-domain analysis, Russian Journal of Nondestructive Testing 60 (2024) 22–34. https://doi.org/10.1134/S1061830923600582. [CrossRef] [Google Scholar]
- P. Frank Pai, H. Deng, M.J. Sundaresan: Time-frequency characterization of Lamb waves for material evaluation and damage inspection of plates, Mechanical Systems and Signal Processing 62–63 (2015) 183–206. https://doi.org/10.1016/j.ymssp 2015.03.011. [CrossRef] [Google Scholar]
- G.M.F. Ramalho, A.M. Lopes, L.F.M. da Silva: Structural health monitoring of adhesive joints using Lamb waves: a review, Structural Control and Health Monitoring 29 (2022) e2849. https://doi.org/10.1002/stc.2849. [Google Scholar]
- J.C. Pineda Allen, C.T. Ng: Debonding detection at adhesive joints using nonlinear Lamb waves mixing, NDT&E International 125 (2022) 102552. https://doi.org/10.1016/j.ndteint.2021.102552. [CrossRef] [Google Scholar]
- L. Yang, I.C. Ume: Inspection of notch depths in thin structures using transmission coefficients of laser-generated Lamb waves, Ultrasonics 63 (2015) 168–173. https://doi.org/10.1016/j.ultras.2015.07.004. [CrossRef] [PubMed] [Google Scholar]
- C.-D. Chen, C.-H. Hsieh, C.-Y. Liu, Y.-H. Huang, P.-H. Wang, R.-D. Chien: Lamb wave-based structural health monitoring for aluminum bolted joints with multiple-site fatigue damage, Journal of Aerospace Engineering 35 (2022) 04022101. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001499. [CrossRef] [Google Scholar]
- J. He, X. Guan, T. Peng, Y. Liu, A. Saxena, J. Celaya, K. Goebel: A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves, Smart Materials and Structures 22 (2013) 105007. https://doi.org/10.1088/0964-1726/22/10/105007. [CrossRef] [Google Scholar]
- R. Wang, Q. Wu, F. Yu, Y. Okabe, K. Xiong: Nonlinear ultrasonic detection for evaluating fatigue crack in metal plate, Structural Health Monitoring 18 (2019) 869–881. https://doi.org/10.1177/1475921718784451. [CrossRef] [Google Scholar]
- Y. Yang, C.-T. Ng, A. Kotousov, H. Sohn, H.J. Lim: Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies, Mechanical Systems and Signal Processing 99 (2018) 760–773. https://doi.org/10.1016/j.ymssp.2017.07.011. [CrossRef] [Google Scholar]
- K. Xu, D. Ta, Z. Su, W. Wang: Transmission analysis of ultrasonic Lamb mode conversion in a plate with partial-thickness notch, Ultrasonics 54 (2014) 395–401. https://doi.org/10.1016/j.ultras.2013.07.011. [CrossRef] [PubMed] [Google Scholar]
- B. Lin, X. Dong: Ship hull inspection: a survey, Ocean Engineering 289 (2023) 116281. https://doi.org/10.1016/j.oceaneng.2023.116281. [CrossRef] [Google Scholar]
- D. Alleyne, P. Cawley: A two-dimensional Fourier transform method for the measurement of propagating multimode signals, Journal of the Acoustical Society of America 89 (1991) 1159–1168. https://doi.org/10.1121/1.400530. [CrossRef] [Google Scholar]
- C. Vargel: Chapter B.2 – types of corrosion on aluminium, in: C. Vargel (ed.), Corrosion of aluminium, Elsevier, Amsterdam, 2004, pp. 113–146. https://doi.org/10.1016/B978-008044495-6/50012-4. [CrossRef] [Google Scholar]
- M.A. Islam, Z. Farhat: Erosion-corrosion mechanism and comparison of erosion-corrosion performance of API steels, Wear 376–377 (2017) 533–541. https://doi.org/10.1016/j.wear.2016.12.058. [CrossRef] [Google Scholar]
- B. Pavlakovic, M. Lowe, D. Alleyne, P. Cawley: Disperse: a general purpose program for creating dispersion curves, in: D.O. Thompson, D.E. Chimenti (eds.), Review of progress in quantitative nondestructive evaluation, vol. 16A, Springer US, Boston, MA, 1997, pp. 185–192. https://doi.org/10.1007/978-1-4615-5947-4_24. [CrossRef] [Google Scholar]
- J.J. Ditri, K. Rajana: An experimental study of the angular dependence of Lamb wave excitation amplitudes, Journal of Sound and Vibration 204 (1997) 755–768. https://doi.org/10.1006/jsvi.1997.0976. [CrossRef] [Google Scholar]
- S.-J. Park, Y.-S. Joo, H.-W. Kim, S.-K. Kim: Selective generation of Lamb wave modes in a finite-width plate by angle-beam excitation method, Sensors 20 (2020) 3868. https://doi.org/10.3390/s20143868. [CrossRef] [PubMed] [Google Scholar]
- D. Cirtautas, V. Samaitis, L. Mažeika, R. Raišutis, E. Žukauskas: Selection of higher order Lamb wave mode for assessment of pipeline corrosion, Metals 12 (2022) 503. https://doi.org/10.3390/met12030503. [CrossRef] [Google Scholar]
- C. Ma, W. Zhu, Y. Xiang, H. Zhang: Numerical and experimental investigations of nonlinear S0 Lamb mode for detection of fatigue damage, in: 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September, IEEE, 2017, pp. 1–4. https://doi.org/10.1109/ULTSYM.2017.8092536. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.