Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Vibroacoustics
Article Number 52
Number of page(s) 15
DOI https://doi.org/10.1051/aacus/2024043
Published online 18 October 2024
  1. D. Gsell, G. Feltrin, S. Schubert, R. Steiger, M. Motavalli: Cross-laminated timber plates: evaluation and verification of homogenized elastic properties, Journal of Structural Engineering 133, 1 (2007) 132–138. [CrossRef] [Google Scholar]
  2. A. Gülzow, R. Steiger, D. Gsell: Non destructive evaluation of stiffness properties of cross-laminated solid wood panels, in: 11th World Conference on Timber Engineering WCTE, Riva del Garda, Italy, 20–24 June, 2010. [Google Scholar]
  3. C. Lalanne: Mechanical vibration and shock analysis, sinusoidal vibration, vol. 1, John Wiley & Sons, London, UK, 2014. [CrossRef] [Google Scholar]
  4. R. Görlacher: A new method for determining the modulus of elasticity of timber, Holz als Roh-und Werkstoff 42 (1984) 219–222. [Google Scholar]
  5. L. Machek, H. Militz, R. Sierra-Alvarez: The use of an acoustic technique to assess wood decay in laboratory soil-bed tests, Wood Science and Technology 34 (2001) 467–472. [CrossRef] [Google Scholar]
  6. D. Larsson, S. Ohlsson, M. Perstorper, J. Brundin: Mechanical properties of sawn timber from Norway spruce, European Journal of Wood and Wood Products 56, 5 (1998) 331–338. [CrossRef] [Google Scholar]
  7. J. Ayarkwa, Y. Hirashima, Y. Sasaki: Predicting tensile properties of finger-jointed tropical African hardwoods using longitudinal vibration methods, Ghana Journal of Forestry 9 (2000) 2000. [Google Scholar]
  8. A. Sliker: Young’s modulus parallel to the grain in wood as a function of strain rate, stress level and mode of loading, Wood and Fiber Science 4 (1973) 325–333. [Google Scholar]
  9. J. Bodig, B.A. Jayne: Mechanics of wood and wood composites, Van Nostrand Reinhold, New York, 1982. [Google Scholar]
  10. R. Steiger, A. Gülzow, C. Czaderski, M.T. Howald, P. Niemz: Comparison of bending stiffness of cross-laminated solid timber derived by modal analysis of full panels and by bending tests of strip-shaped specimens, European Journal of Wood and Wood Products 70, 1–3 (2012) 141–153. [CrossRef] [Google Scholar]
  11. A. Faircloth, L. Brancheriau, H. Karampour, C. Kumar: Evaluation of full-sized and thick cross-laminated timber using in-line non-destructive techniques, Wood Material Science & Engineering 19, 3 (2023) 660–673. [Google Scholar]
  12. J. Zhou, Y.H. Chui, J. Niederwestberg, M. Gong: Effective bending and shear stiffness of cross-laminated timber by modal testing: method development and application, Composites Part B: Engineering 198 (2020) 108225. [CrossRef] [Google Scholar]
  13. M. Kawrza, T. Furtmüller, C. Adam, R. Maderebner: Parameter identification for a point-supported cross laminated timber slab based on experimental and numerical modal analysis, European Journal of Wood and Wood Products 79, 2 (2021) 317–333. [CrossRef] [Google Scholar]
  14. P. Avitabile: Modal testing: a practitioner’s guide, John Wiley & Sons, Sussex, UK, 2017. [CrossRef] [Google Scholar]
  15. A. Phillips, R. Allemang: Normalization of experimental modal vectors to remove modal vector contamination, in: R. Allemang (Ed.), Topics in modal analysis II, Volume 8: Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, Springer, Cham, 2014, pp. 29–41. [Google Scholar]
  16. J. Weckendorf, E. Ussher, I. Smith: Dynamic response of CLT plate systems in the context of timber and hybrid construction, Composite Structures 157 (2016) 412–423. [CrossRef] [Google Scholar]
  17. S. Vallely, S. Schoenwald: An efficient analytical method to obtain the homogenised frequency-independent elastic material properties of cross-laminated timber elements, Journal of Sound and Vibration 546 (2023) 117424. [CrossRef] [Google Scholar]
  18. S. Vallely, S. Schoenwald: Frequency-independent homogenised elastic and damping constants of cross-laminated timber, in: A. Astolfi, F. Asdrubali, L. Shtrepi (eds), Proceedings of Forum Acusticum 2023, European Acoustics Association, 2023, pp. 1297–1304. Available at https://dael.euracoustics.org/confs/fa2023/data/index.html. [Google Scholar]
  19. A.G. Piersol, T.L. Paez: Harris’ shock and vibration handbook. 6th edn., McGraw-Hill, New York, 2010. [Google Scholar]
  20. D. Bies, S. Hamid: In situ determination of loss and coupling loss factors by the power injection method, Journal of Sound and Vibration 70, 2 (1980) 187–204. [CrossRef] [Google Scholar]
  21. L. Cremer, M. Heckl: Structure-borne sound: structural vibrations and sound radiation at audio frequencies, Springer Science & Business Media, Berlin, Heidelberg, 2005. [Google Scholar]
  22. B.C. Bloss, M.D. Rao: Estimation of frequency-averaged loss factors by the power injection and the impulse response decay methods, Journal of the Acoustical Society of America 117, 1 (2005) 240–249. [CrossRef] [PubMed] [Google Scholar]
  23. D.J. Ewins: Modal testing: theory, practice and application. 2nd edn., Research Studies Press Ltd, Herfortshire, England, 2000. [Google Scholar]
  24. R.J. Allemang: The modal assurance criterion – twenty years of use and abuse, Sound and vibration 37, 8 (2003) 14–23. [Google Scholar]
  25. C. Hopkins: Sound insulation, Routledge, London, England; New York, NY, 2007. [Google Scholar]
  26. O. Zienkiewicz, R. Taylor, J. Zhu: The finite element method: its basis and fundamentals. 7th edn., Butterworth-Heinemann, Oxford, 2013. [Google Scholar]
  27. C. Rainieri, G. Fabbrocino: Operational modal analysis of civil engineering structures, vol. 142, Springer, New York, 2014, p. 143. [Google Scholar]
  28. E. Reynders, J. Houbrechts, G. De Roeck: Fully automated (operational) modal analysis, Mechanical Systems and Signal Processing 29 (2012) 228–250. [CrossRef] [Google Scholar]
  29. C. Churchill, B. Nusser, C. Lux: Calculating the equivalent elastic moduli and their influence on modelling the sound insulation of softwood cross laminated timber (CLT), Applied Acoustics 205 (2023) 109277. [CrossRef] [Google Scholar]
  30. ISO 1683:2015: Acoustics – Preferred reference values for acoustical and vibratory levels, standard, International Organization for Standardization, Geneva, CH, 2015. [Google Scholar]
  31. K. Lervåg: VimTex. Available at https://github.com/lervag/vimtex, 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.