Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 61
Number of page(s) 13
Section Structural Acoustics
DOI https://doi.org/10.1051/aacus/2024058
Published online 18 November 2024
  1. D. Thompson: Railway noise and vibration: mechanisms, modelling and means of control, Elsevier, Oxford, UK, 2008. https://doi.org/10.1016/B978-0-08-045147-3.X0023-0. [Google Scholar]
  2. P.W. Anderson: Local moments and localized states, Reviews of Modern Physics 50, 2 (1978) 191–201. https://doi.org/10.1103/RevModPhys.50.191. [CrossRef] [Google Scholar]
  3. G. SenGupta: Effects of deviations from periodicity, in: G. SenGupta (Ed.), Vibration of periodic structures, Elsevier, Oxford, UK, 2024, pp. 177–187. https://doi.org/10.1016/B978-0-32-399022-6.00018-7. [CrossRef] [Google Scholar]
  4. C. Pierre, E. Dowell: Localization of vibrations by structural irregularity, Journal of Sound and Vibration 114, 3 (1987) 549–564. https://doi.org/10.1016/S0022-460X(87)80023-8. [CrossRef] [Google Scholar]
  5. M.A. Heckl: Railway noise – can random sleeper spacings help?, Acta Acustica United with Acustica 6 (1995) 559–564. [Google Scholar]
  6. A. Nordborg: Parametrically excited rail/wheel vibrations due to track-support irregularities, Acta Acustica United with Acustica 84, 5 (1998) 854–859. [Google Scholar]
  7. T.X. Wu, D.J. Thompson: The influence of random sleeper spacing and ballast stiffness on the vibration behaviour of railway track, Acta Acustica United with Acustica 86 (2000) 313–321. [Google Scholar]
  8. K. Abe, S. Batjargal, K. Koro: Resonant behavior of railway track having random sleeper spacing, Advances in Structural Engineering and Mechanics (2013) 1903–1912. [Google Scholar]
  9. S. Batjargal, K. Abe, K. Koro: Sleeper spacing optimization for vibration reduction in rails, Journal of the Computational Structural Engineering Institute of Korea 25, 6 (2012) 569–577. https://doi.org/10.7734/coseik.2012.25.6.569. [CrossRef] [Google Scholar]
  10. K. Abe, S. Batjargal, K. Koro: Influence of sleeper spacing on vibration and noise of railway tracks, ISMA 26 (2014) 3385–3396. [Google Scholar]
  11. K. Stampka, E. Sarradj: A time-domain finite-difference method for bending waves on infinite beams on an elastic foundation, Acoustics 4 (2022) 867–884. https://doi.org/10.3390/acoustics4040052. [CrossRef] [Google Scholar]
  12. A.C. Lamprea-Pineda, D.P. Connolly, M.F. Hussein: Beams on elastic foundations – a review of railway applications and solutions, Transportation Geotechnics 33 (2022) 100696. https://doi.org/10.1016/j.trgeo.2021.100696. [CrossRef] [Google Scholar]
  13. A. Nordborg: Wheel/rail noise generation due to nonlinear effects and parametric excitation, Journal of the Acoustical Society of America 111, 4 (2002) 1772–1781. https://doi.org/10.1121/1.1459463.29. [CrossRef] [PubMed] [Google Scholar]
  14. Railway applications – Noise emission – Characterisation of the dynamic properties of track sections for pass by noise measurements – EN 15461:2008+A1, CEN Bruessels, 2008. [Google Scholar]
  15. C. Czolbe: Akustisch optimierte Schienenzwischenlage – Schlussbericht, Technical report, PROSE AG, Winterthur, Switzerland, 2020. [Google Scholar]
  16. R. Menius, V. Matthews: Railway construction and infrastructure. 10th edn., Springer Vieweg Wiesbaden, Wiesbaden, 2020. https://doi.org/10.1007/978-3-658-27733-8. [Google Scholar]
  17. R. Sañudo, M. Cerrada, B. Alonso, L. dell’Olio: Analysis of the influence of support positions in transition zones. A numerical analysis, Construction and Building Materials 145 (2017) 207–217. https://doi.org/10.1016/j.conbuildmat.2017.03.204. [CrossRef] [Google Scholar]
  18. H. Tolle, Optimization methods, Springer, Berlin, Heidelberg, 1975. https://doi.org/10.1007/978-3-642-87731-5. [CrossRef] [Google Scholar]
  19. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, I. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in python, Nature Methods 17 (2020) 261–272. https://doi.org/10.1038/s41592-019-0686-2. [CrossRef] [Google Scholar]
  20. A. Fabro, H. Meng, D. Chronopoulos: Correlated disorder in rainbow metamaterials for vibration attenuation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235, 14 (2021) 2610–2621. https://doi.org/10.1177/0954406220986596. [CrossRef] [Google Scholar]
  21. P.D. Cha, C. Pierre: Vibration localization by disorder in assemblies of monocoupled, multimode component systems, Journal of Applied Mechanics 58, 4 (1991) 1072–1081. https://doi.org/10.1115/1.2897684. [CrossRef] [Google Scholar]
  22. T. Dahlberg: Railway track stiffness variations – consequences and countermeasures, International Journal of Civil Engineering 8, 1 (2010) 1–12. [Google Scholar]
  23. M. Sol-Sánchez, F. Moreno-Navarro, M.C. Rubio-Gámez: The use of elastic elements in railway tracks: a state of the art review, Construction and Building Materials 75 (2015) 293–305. https://doi.org/10.1016/j.conbuildmat.2014.11.027. [CrossRef] [Google Scholar]
  24. L. Fendrich, W. Fengler: Handbook of railway infrastructure. 3rd edn., Springer Vieweg, Berlin, Heidelberg, 2019. https://doi.org/10.1007/978-3-662-56062-4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.