Issue |
Acta Acust.
Volume 8, 2024
Topical Issue - Numerical, computational and theoretical acoustics
|
|
---|---|---|
Article Number | 62 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/aacus/2024048 | |
Published online | 18 November 2024 |
- M. Albert, P. Bousquet, D. Lizarazu; Ground effects for aircraft noise certification (2017-3845), in: 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO, USA, 5–9 June, American Institute of Aeronautics and Astronautics, 2017, AIAA paper 2017-3845. [Google Scholar]
- P. Bousquet, V.P. Blandeau, Feasibility of determining aircraft certification noise levels using ground plane microphone measurements, in: AIAA AVIATION 2021 Forum, August 2–6, Virtual event, American Institute of Aeronautics and Astronautics, 2021, AIAA paper 2021-2159. [Google Scholar]
- E. Nesbitt, J. Lan, S. Hunkler: Microphone acoustic characteristics for aircraft flyover testing, in: AIAA Aviation 2020 Forum, June 15–19, Virtual event, American Institute of Aeronautics and Astronautics, 2020, AIAA paper 2020-2613. [Google Scholar]
- J.M. Giannakis: Evaluation of a correction factor for flyover-noise ground plane microphones, in: AIAA Aviation 2020 Forum, June 15–19, Virtual event, American Institute of Aeronautics and Astronautics, 2020, AIAA paper 2020-2612. [Google Scholar]
- V.P. Blandeau, P. Bousquet: A new plate design to improve the accuracy of aircraft exterior noise measurements on the ground, in: AIAA AVIATION 2021 Forum, August 2–6, Virtual event, American Institute of Aeronautics and Astronautics, 2021, AIAA paper 2021-2158. [Google Scholar]
- T. Norum, C. Liu: Point source moving above a finite impedance reflecting plane – experiment and theory, Journal of the Acoustical Society of America 63, 4 (1978) 1069–1073. [CrossRef] [Google Scholar]
- S. Oie, R. Takeuchi: Sound radiation from a point source moving in parallel to a plane surface of porous material, Acta Acustica united with Acustica 48, 3 (1981) 123–129. [Google Scholar]
- M. Ochmann: Exact solutions for sound radiation from a moving monopole above an impedance plane, Journal of the Acoustical Society of America 133, 4 (2013) 1911–1921. [CrossRef] [PubMed] [Google Scholar]
- K.M. Li, Y. Wang: On the three-dimensional sound fields from a moving monopole source above a non-locally reacting ground, Journal of the Acoustical Society of America 147, 4 (2020) 2581–2596. [CrossRef] [PubMed] [Google Scholar]
- K. Attenborough, T. Van Renterghem: Predicting outdoor sound, CRC Press, Boca Raton, 2021. [CrossRef] [Google Scholar]
- S.M. Candel: Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics, Journal of Fluid Mechanics 83, 3 (1977) 465–493. [CrossRef] [Google Scholar]
- A.D. Pierce: Acoustics: an introduction to its physical principles and applications, Springer International Publishing, 2019. [Google Scholar]
- H. Bian, Q. Tan, S. Zhong, X. Zhang: Efficient computation of broadband noise propagation using Gaussian beam tracing method, Journal of the Acoustical Society of America 151, 5 (2022) 3387–3397. [CrossRef] [PubMed] [Google Scholar]
- L. Dallois, P. Blanc-Benon, D. Juvé: A wide-angle parabolic equation for acoustic waves in inhomogeneous moving media: applications to atmospheric sound propagation, Journal of Computational Acoustics 9, 2 (2001) 477–494. [CrossRef] [Google Scholar]
- V.E. Ostashev, J. Colas, D. Dragna, D.K. Wilson: Phase-preserving narrow- and wide-angle parabolic equations for sound propagation in moving media, Journal of the Acoustical Society of America 155, 2 (2024) 1086–1102. [CrossRef] [PubMed] [Google Scholar]
- M. Hornikx, R. Waxler, J. Forssén: The extended Fourier pseudospectral time-domain method for atmospheric sound propagation, Journal of the Acoustical Society of America 128 (2010) 1632–1646. [CrossRef] [PubMed] [Google Scholar]
- M. Hornikx, D. Dragna: Application of the Fourier pseudospectral time-domain method in orthogonal curvilinear coordinates for near-rigid moderately curved surfaces, Journal of the Acoustical Society of America 138, 1 (2015) 425–435. [CrossRef] [PubMed] [Google Scholar]
- D. Dragna, P. Blanc-Benon, F. Poisson: Modeling of broadband moving sources for time-domain simulations of outdoor sound propagation, AIAA Journal 52, 9 (2014) 1928–1939. [CrossRef] [Google Scholar]
- D. Dragna, P. Blanc-Benon: Towards realistic simulations of sound radiation by moving sources in outdoor environments, International Journal of Aeroacoustics 13, 5–6 (2014) 405–426. [CrossRef] [Google Scholar]
- H.H. Brouwer: A ray acoustics model for the propagation of aircraft noise through the atmosphere, International Journal of Aeroacoustics 13, 5–6 (2014) 363–383. [CrossRef] [Google Scholar]
- P. Schäfer, M. Vorländer: Atmospheric ray tracing: an efficient, open-source framework for finding eigenrays in a stratified, moving medium, Acta Acustica 5 (2021) 26. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Yunus, D. Casalino, F. Avallone, D. Ragni: Toward inclusion of atmospheric effects in the aircraft community noise predictions, Journal of the Acoustical Society of America 150, 2 (2021) 759–768. [CrossRef] [PubMed] [Google Scholar]
- C. Wu, S. Redonnet: Aircraft noise impact prediction with incorporation of meteorological effects, Transportation Research Part D: Transport and Environment 125 (2023) 103945. [CrossRef] [Google Scholar]
- M. Buret, K.M. Li, K. Attenborough: Optimisation of ground attenuation for moving sound sources, Applied Acoustics 67, 2 (2006) 135–156. [CrossRef] [Google Scholar]
- D. Dragna, P. Blanc-Benon: Sound radiation by a moving line source above an impedance plane with frequency-dependent properties, Journal of Sound and Vibration 349 (2015) 259–275. [CrossRef] [Google Scholar]
- Y. Wang, K.M. Li, D. Dragna, P. Blanc-Benon: On the sound field from a source moving above non-locally reacting grounds, Journal of sound and vibration 464 (2020) 114975. [CrossRef] [Google Scholar]
- V.E. Ostashev, D.K. Wilson, L. Liu, D.F. Aldridge, N.P. Symons, D. Marlin: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Journal of the Acoustical Society of America 117, 2 (2005) 503–517. [CrossRef] [PubMed] [Google Scholar]
- M. Buret: New analytical Models for outdoor moving sources of sound, Doctoral Dissertation, Open University, Milton Keynes, 2002. [Google Scholar]
- K. Attenborough, K.M. Li, K.V. Horoshenkov: Predicting outdoor sound, CRC Press, London, 2006. [CrossRef] [Google Scholar]
- V.E. Ostashev, D.K. Wilson: Acoustics in moving inhomogeneous media, CRC Press, London, 2015. [CrossRef] [Google Scholar]
- M. Roger, Sound radiation by moving surfaces and the Green’s functions technique, in: R. Camussi (Ed.), Noise sources in turbulent shear flows: fundamentals and applications, Springer, Vienna, 2013, pp. 73–116. [CrossRef] [Google Scholar]
- P.M. Morse, K.U. Ingard: Theoretical acoustics, Princeton University Press, Princeton, 1968. [Google Scholar]
- J. Scott, P. Blanc-Benon, O. Gainville: Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere, Wave Motion 72 (2017) 41–61. [CrossRef] [Google Scholar]
- K. Attenborough, I. Bashir, S. Taherzadeh: Outdoor ground impedance models, Journal of the Acoustical Society of America 129, 5 (2011) 2806–2819. [CrossRef] [PubMed] [Google Scholar]
- C. Bogey, C. Bailly: A family of low dispersive and low dissipative explicit schemes for flow and noise computations, Journal of Computational physics 194, 1 (2004) 194–214. [CrossRef] [Google Scholar]
- J. Colas, A. Emmanuelli, D. Dragna, P. Blanc-Benon, B. Cotté, R.J.A.M. Stevens: Wind turbine sound propagation: comparison of a linearized Euler equations model with parabolic equation methods, Journal of the Acoustical Society of America 154, 3 (2023) 1413–1426. [CrossRef] [PubMed] [Google Scholar]
- R. Troian, D. Dragna, C. Bailly, M.-A. Galland: Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow, Journal of Sound and Vibration 392 (2017) 200–216. [CrossRef] [Google Scholar]
- D. Komatitsch, R. Martin: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics 72, 5 (2007) SM155–SM167. [CrossRef] [Google Scholar]
- ISO9613-1:1993: Acoustics – Sound attenuation in free field – Part 1: atmospheric absorption calculation, Technical report, International Standards Organization, Genève, 1993. [Google Scholar]
- E. Salomons, D. van Maercke, J. Defrance, F. de Roo: The harmonoise sound propagation model, Acta Acustica united with Acustica 97, 1 (2011) 62–74. [CrossRef] [Google Scholar]
- O. Gainville: Modelisation de la propagation atmosphérique des ondes infrasonores par une méthode de tracé de rayons non-linéaire (“Numerical modelling of atmospheric infrasound propagation using a nonlinear ray-tracing method”), PhD thesis No. 2008-07, Ecole Centrale de Lyon, Lyon, 2008. [Google Scholar]
- D. Blokhintzev: The propagation of sound in an inhomogeneous and moving medium I, Journal of the Acoustical Society of America 18, 2 (1946) 322–328. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.